
Air injection & displacement for recovery with oil horizontal (AIDROH) project Approval #11618

Performance presentation

AER offices
Calgary
February 2015

Advisory

This document contains forward-looking information prepared and submitted pursuant to the Alberta Energy Regulator's requirements and is not intended to be relied upon for the purpose of making investment decisions, including without limitation, to purchase, hold or sell any securities of Cenovus Energy Inc. Additional information regarding Cenovus Energy Inc. is available at cenovus.com.

AIDROH* introduction and overview

This presentation was prepared in accordance with AER Directive 054 - Performance Presentations, Auditing, and Surveillance of In Situ Oil Sands Schemes

Subsurface Issues Related to Resource Evaluation and Recovery

Directive 054, Section 3.1.1

Surface Operations, Compliance, and Issues Not Related to Resource Evaluation and Recovery

Directive 054, Section 3.1.2

AER Dir 054 Section 3.1.1

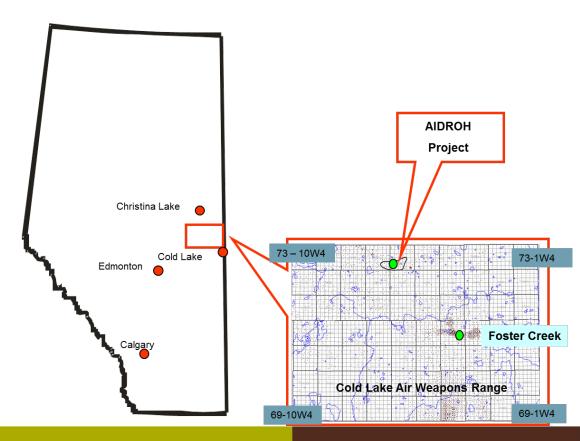
Subsurface issues related to resource evaluation and recovery

Subsurface issues: Table of contents

- Scheme background
- 2. Geology / geoscience
- 3. Drilling & completion
- 4. Artificial Lift
- Instrumentation
- Scheme performance
- 7. Future plans

Scheme background

Subsurface section 1



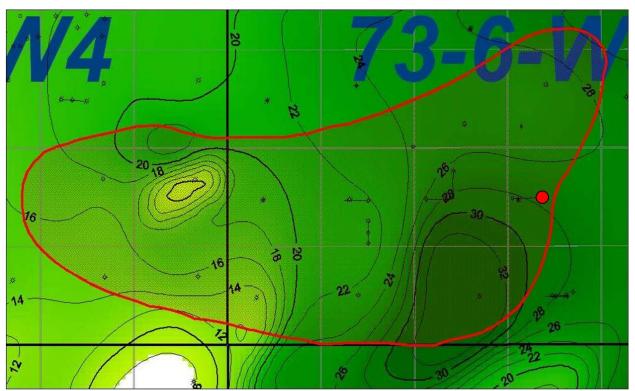
Background

The Air Injection Displacement Horizontal Oil Recovery (AIDROH) project utilities gravity drainage as bitumen recovery process to recover bitumen which has been passively heated by Cenovus EnCAID combustion project


Location map

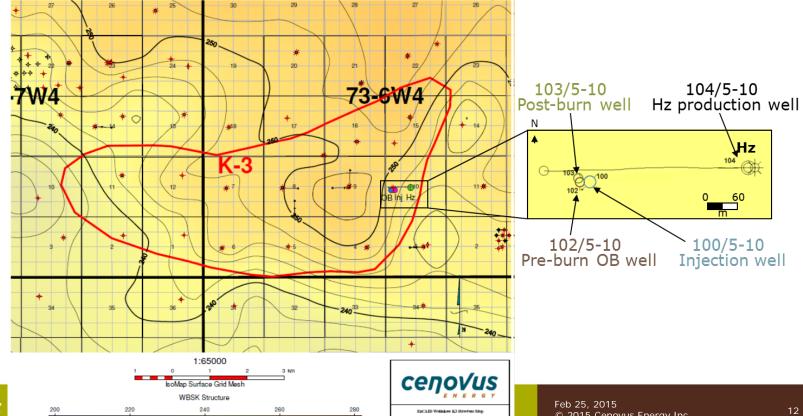
Geological / geoscience

Subsurface section 2

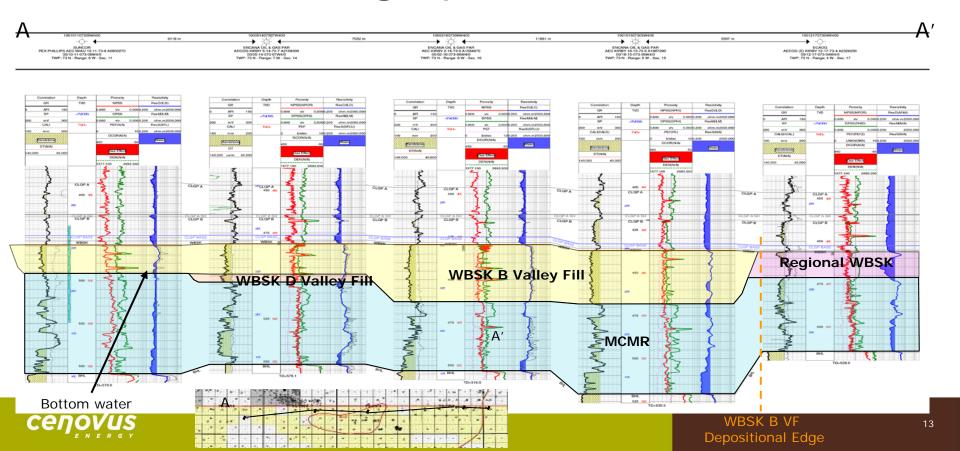


Summary of reservoir properties

Depth	465 TVD
Thickness	25-30m
Average Porosity	35%
Average Bitumen Saturation	65%
Average Permeability	1,350mD
OBIP (Project Area)	3,302 e ³ m ³
Oil Viscosity @ 13C	~35,000 cP
@ 60C	~600 cP
API Oil Gravity	10.3 -10.8


Wabiskaw bitumen thickness

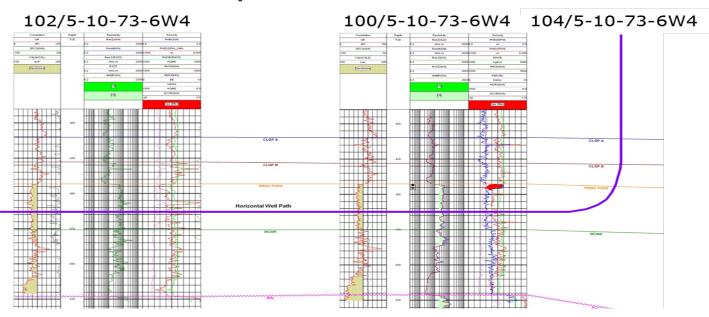
Type log cut offs:-


- -<75 api gamma ray
- ->20 ohm resistivity
- ->27% porosity

Wabiskaw structural map

Wabiskaw stratigraphic cross-section

104/5-10 horizontal production well



Producer drilled 15m below G/B interface:

- avoid hitting concretion
- avoid missing heated zone

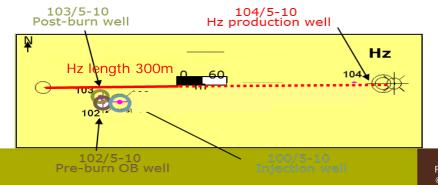
<u>Learnings:</u>

drill lower to optimize reserves recovery

Drilled in 2011 east of injector well at surface location 6-10 300m of horizontal leg landed 30m north of injector well and ~15m into heated zone

Drilling and completion

Subsurface section 3


Well layout

Drilled 103/5-10-73-6W4 post-burn vertical well in September 2011

- Drilled 11m northwest of 102/5-10-73-6W4 pre-burn well
- Successfully cored 44m from top of Wabiskaw to top of McMurray no lost core
- Extensive core and oil analysis program started in early 2012
 - · Core routine core analysis, thin section, SEM, XRD
 - · Oil API, viscosity, composition

Drilled 104/5-10-73-6W4 horizontal producer in September 2011

- 300m east-west horizontal section landed 30m north of 100/5-10-73-6W4 injector well and 15m below Wabiskaw gas/bitumen interface
- Equipped with 20 thermocouples along horizontal length

Completion

Recompletion on Sept 2014

- Install tail pipe to toe
 - divert hot crude to toe
 - encourage warming near toe
- Upsize artificial lift
 - anticipate more influx as toe warms
- Change the instrumentation coil
 - rid chance of instrumentation damage
 - rig wait on location

AiDROH 104/05-10-073-06W4M Recompletion

Conductor: 508.0mm at 20.0mKB
Surface Casing: 339.7 mm landed at 317.0 mKB

244.5 mm casing landed at 652.45 mKB

Production Tubing/PCP Stator:
89.00 mm tubing Landed@~576.87 mKB

Instrumentation String
31.7mm Colled 20 point TC landed at 880.00mKB

Rod String:
28.6 mm Rod String & PCP 585.53mKB

Liner 177.8 mm 38.7 / 34.2 kg/m L-80 QB2
699.40 - 890.0 mKB

Requirements under subsection 3.1.1 3c – wellbore schematics are included in the Appendix

Artificial lift

Subsurface section 4

Artificial lift

Artificial lift technology remains the same

- PCP, temperature tolerance of elastomer 150C
- Lift capacity range of 34-50 m3/D
- Operating temperature range 44C to 108C

Artificial lift performance

Well produced throughout 2014 except from September 11th to September 22nd 2014 to perform recompletion

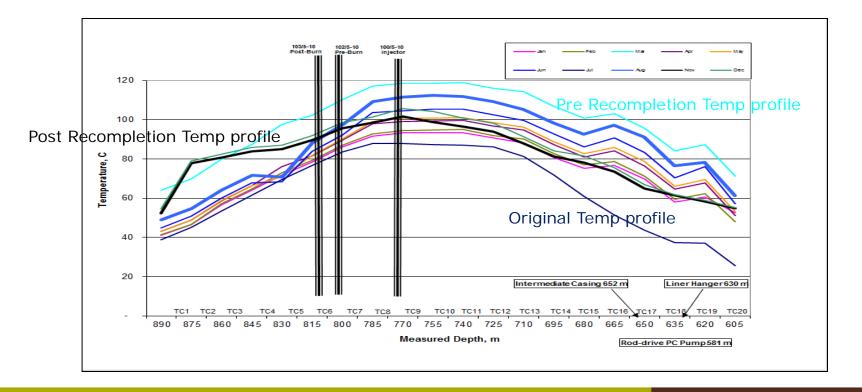
PCP continues to perform within its design operating parameters

Significant volume of entrained gas ingested by the PCP

Instrumentation

Subsurface section 5

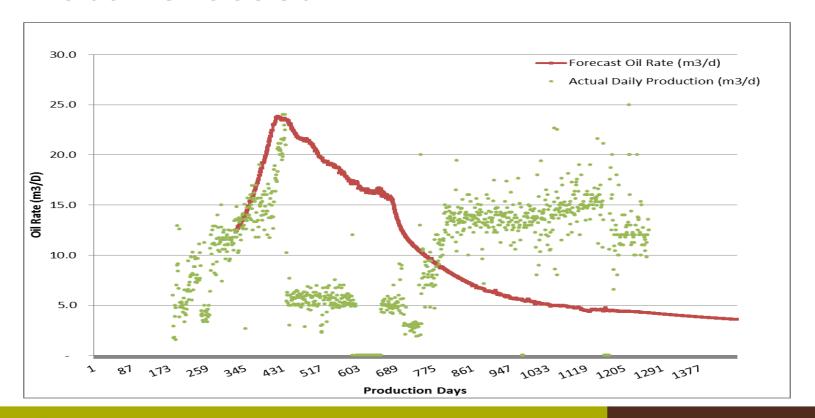
Instrumentation in wells


104/05-10-73-6W4/00

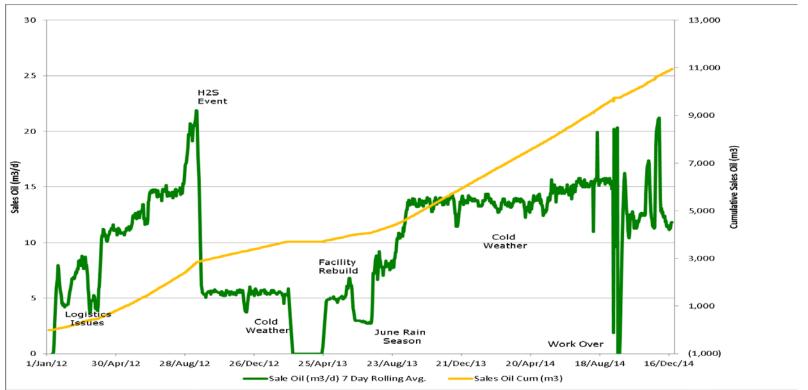
• Equipped with 10 thermocouples

Requirements under subsection 3.1.1 5a – wellbore schematics 5c and 5d are included in the Appendix

Thermocouple temp vs. depth


Scheme performance

Subsurface section 6



Oil rate forecast

Production history

Heated oil volume

Calculated using analytical geometry based method Combustion front heats bitumen by conduction in shape of sphere cap

- Thermally affected radius ~ 240 m
 Chemically affected
 - 45,000 m³

Thermal affected*

• 527,000 m³

Produced oil quality

Original oil ~45,000 cp @ reservoir conditions (dead) Not expecting significant upgrading

		Viscosity	cSt), temp	o(°C)	
Sample		11000011,	(000), 00111	, ,	
No.	13	25	35	50	75
1	26,525	6469	2608	781	170
2		7510	2111	853	
3	15,641	5006	2103	652	216
4		9073	2483	925	
5		8013	2185	844	
6		7994	2112	1022	
7	26,454	7763	2971	860	184
8	37,131	8276	3050	884	188
9		8271	2410	923	
10		5389	1646	662	
11		8442	2338	894	
12		7180	2449	926	
13	57,523	6270	1583	737	198
14		10250	2922	1130	
15		10955	3038	1153	
16		10457	2919	1103	
17		10267	2780	1091	

	SARA, %				
Sample	Asphaltene				
No.	(C5 insoluble)	Saturates	Resins	Aromatics	
1	13	26	11	50	
2	14	25	13	49	
3	14	26	13	47	
4	14	24	13	49	
5	15	25	13	47	
6	12	25	11	52	
7	13	28	8	52	
8	15	23	16	46	
9	16	24	11	49	
10	13	24	9	54	
11	13	24	13	50	
12	14	24	13	49	
13	14	23	10	53	

BS&W

	BS&W
Q1	2.0%
Q2	1.0%
Q3	1.0%
Q4	7.5%

Subsurface key learnings

Thermocouple data necessary for simulation modeling on history match and production prediction scenarios

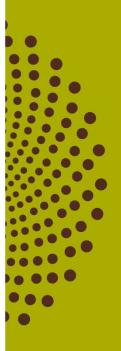
Casing gas pressure not detected after recompletion

No H2S detection after recompletion

- Maximum recorded 430 ppm
 Contributions from toe section of producer improved based on observed thermocouple data
- ~ 10-15 C temperature increase since recompletion
 High BS&W Number on produced bitumen since Aug
 - Preliminary lab result suggested formation water

Future plans

Subsurface section 6


Future plans

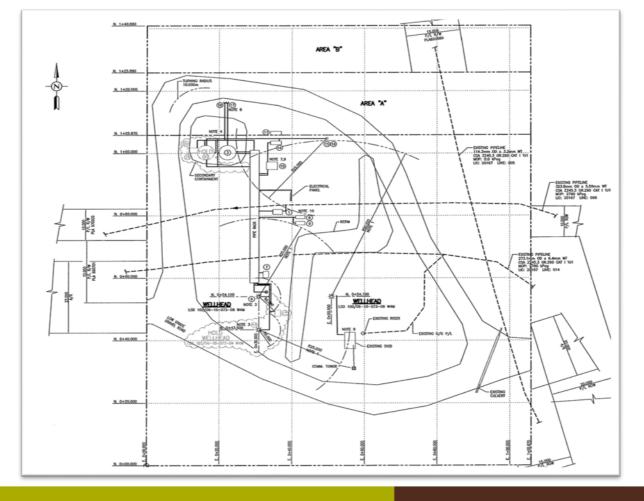
Suspend AIDROH well in Q1 2015

AER Dir 54 Section 3.1.2

Surface operations, compliance and issues not related to resource evaluation and recovery

Surface operations: Table of contents

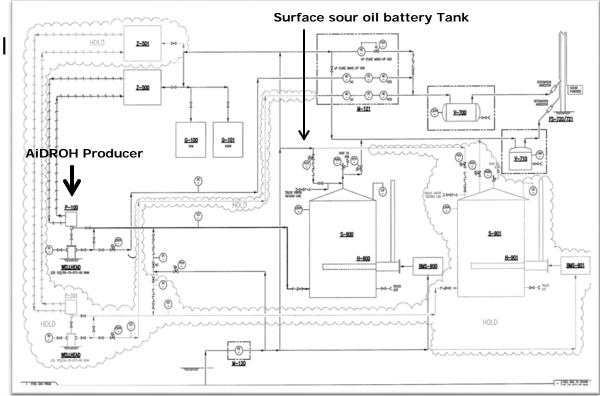
- 1. Facility overview / modifications
- 2. Measurement and reporting
- 3. Water, water disposal well and landfill waste
- 4. Sulphur production
- Environmental issues
- Compliance statement
- 7. Non-compliance discussion
- 8. Future plans



Facility overview / modifications

Surface section 1

Site layout



Process flow schematic

Modification rationale

- Compliance with sour oil battery operations and license
- Sour rated vent

Facility performance - 2014

Changed tank venting to sour rated on Sept, 2014

No casing pressure after recompletion, no H2S reading on the analyzer

- Minimum operating pressure limits effectiveness until sufficient consistent casing pressure demonstrated
- Daily Draeger testing protocol in effect

Low operating temperatures prove problematic during winter operations

Gas usage

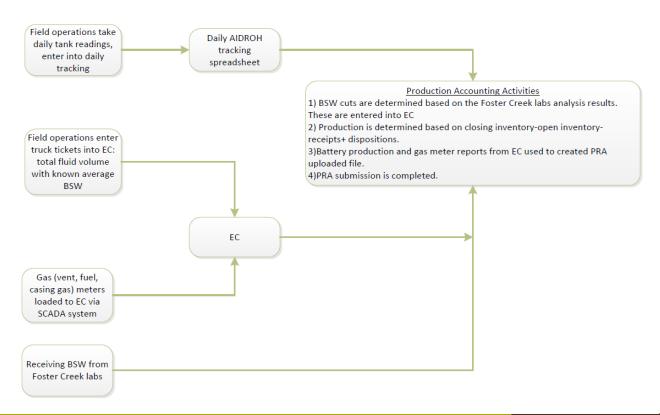
Usages are for blanket gases in sales oil tanks and incineration of produced sour gases

Gas source Primrose plant sales

Total usage 674 e³m³

Green house gas emissions

Month	2014 GHG (Tonne)
January	46
February	64
March	91
April	101
May	109
June	112
July	115
August	78
September	23
October	11
November	22
December	30



Measurement and reporting

Surface section 2

Measurement reporting

Water, water disposal wells & landfill waste

Surface section 3

Water and waste disposal

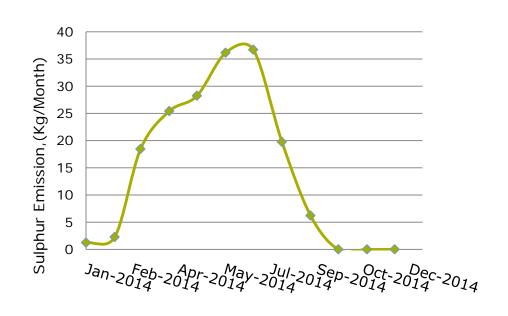
No produced water

Produced bitumen volumes typically ~7% BS&W

No processing occurs on site

All produced volumes are trucked out for processing

Sulphur production


Surface operations section 4

Sulphur production

No H2S detected after recompletion on Sept 2014

2014	Sulphur Emission, Kg
Q1	22
Q2	90
Q3	63
Q4	0 ,

Environmental issues

Surface section 5

Environmental issues

No environmental issues occurred in 2014

Compliance statement

Surface section 6

Compliance Confirmation

No noncompliance events occurred in 2014

Non-compliance discussion

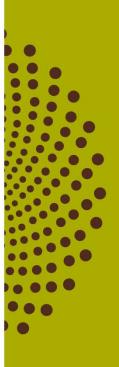
Surface section 7

Compliance confirmation

No noncompliance events occurred since the last performance review

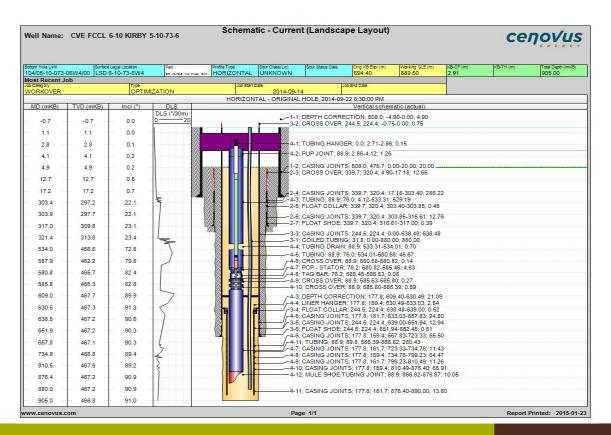
Future Plans

Surface section 5



Future plans

Suspend AIDROH well in Q1 2015 due to low oil price environment



Appendix

Wellbore Schematic

Questions

