Pelican Lake SAGD Pilot AER Approval 11469B

Annual Update

January 1, 2014 – December 31, 2014

Disclaimer

This Cenovus Pelican Lake SAGD Pilot January 1, 2014 to December 31, 2014 Update ("Update") is prepared and submitted pursuant to regulatory requirements promulgated by the Energy Resources Conservation Board under its Directive 054 dated October 15, 2007. The contents of this Update are not intended to be, and may not be relied upon by any person, company, trust, partnership or other entity ("Person") for the purpose of making any investment decision, including without limitation any decision to purchase, hold or sell any securities of Cenovus Energy Inc. or any of its affiliates ("Cenovus").

Cenovus expressly disclaims, and makes no representation or warranty, express or implied, with respect to any of the information made available in this Update where such information is used by any Person for the purposes of making any investment decision as prohibited by this disclaimer, and none of Cenovus and its affiliates, and their respective officers, directors, employees, agents, advisors and contractors shall have any liability to any Person in respect thereof.

Agenda

- Project Overview
- Geological Update
- Resource Recovery
- Facility Update
- Compliance

Subsection 3.1.1

Cenovus SAGD Pilot Lease

селоуиз

Scheme Description & Overview

Base of Grand Rapids 'A'	357-363 m Subsea
Average Gross Thickness	23 m
Average SAGD Pay Thickness	18 m
Average Porosity	35 %
Average Water Saturation	46 % (Gross)
	38 % (SAGD Pay Zone)
Average Permeability	2.9 D
OBIP (Internal CVE estimate)	33 MMbbl
Drilled well pairs	2
Source water well	1
Disposal well	1
Oil Viscosity	1,000,000 cp+
Oil Gravity	7.5-8.5 API
Initial Reservoir Pressure	1200 kPa
Fracture Gradient	21.3 kPa/m
Fracture Closure Pressure	4.75 MPa

Geology & Geoscience

Grand Rapids 'A' Type Log

Bitumen Accumulation

Well Pair 1 Trajectories/Cross-Section

I01 UWI: 100/12-02-082-23 P01 UWI: 102/12-02-082-23

Well Pair 2 Trajectories/Cross-Section

IO2 UWI: 102/09-03-082-23W4 PO2 UWI: 103/09-03-082-23

Section 3.1.1 (2h)

Surface Heave Monitoring (InSAR)

Cenovus Pelican Lake Corner Reflector Locations

Figure 1: Corner Reflector Locations at Cenovus Pelican Lake, Alberta. Well layouts

provided by Cenovus in 2012 and 2013.

Corner Reflector Vertical Deformation March 26, 2013 to December 10, 2014

Figure 4: Cumulative corner reflector vertical deformation: March 26, 2013 to December 10, 2014.

- March 26, 2013 <20mm total vertical displacement observed
- 15 RADARSAT-2 scenes were acquired in 2014
- Measurements to June 25, 2014 do not indicate incremental displacement

4D Seismic Lines

- Baseline 3D January 2011
- 4D Shoots:
 - 1st January 2012
 - 2nd March 2013
 - 3rd January 2014
 - 4th January 2015 (processing)
- 4D seismic shows the areas of steam chamber development and connection to the lean zone

Pilot Monitoring Network

•	Те	mperature
0	Temperature & Pressure	
\bigcirc	Gr	ound Water observation
\bigcirc	ΤI	nermal compliancy observation
WP0)1	Equipped with fiber-optic string for temperature monitoring
WP0	2	Equipped with 6-point thermocouple string for temperatures
		Ground water observation wells not illustrated on map:
		100/04-27-82-22
-		1F1/13-07-82-22
		16-07-82-22 (camp 1 water source well)

селоуиз

Section 3.1.1(3a)

103/16-03-082-23W4 Observation well log

Section 3.1.1(2e)

26I01 Injector Completion Schematic

26P01 Producer Completion Schematic

26P01 Producer Completion Schematic

26I02 Injector Completion Schematic

26P02 Producer Completion Schematic

26P02 Producer Completion Schematic

Artificial Lift

Electric Submersible Pumps (ESP)

- Pump Range 60 -600 m³/d
- Intake Pump Pressure 500-1150 kPaa
- Variable Frequency Drives (VFD)
- Operating Temperature limit 218°C
- Low pump efficiency under saturation conditions

Section 3.1.1(4a,b)

Well Instrumentation

Pressure

- Injectors
 - Utilize annular space as gas blanket for bottom hole pressure measurement
- Producers
 - Utilize bubble tubes to heel with gas to measure bottom hole pressure
 - Pressure sensor at the toe of fiber optic string

Temperature

Producers utilize 40-point temperature fiber c/w pressure sensor at the toe

Conformance Issues

- Uneven Start-up
- Uneven Skin
 - Scaling & plugging in slotted liners

Section 3.1.1(7b)

Well Pair 1

Scheme Performance

Well Pair 1 Steam Chamber Seismic

Section 3.1.1 (6b)

102/05-11-082-23 Observation Well Temperature

102/13-02-082-23 Observation Well Temperature

Correlation

Depth

Porosity

Resistivity

Well Pair 1 Producer Temperature Profiles

Well Pair 1 Production

Section 3.1.1(7a)

Well Pair 2 Steam Chamber Seismic

Section 3.1.1 (6b)

Well Pair 2 Production

Well Pair 2 Production Data

селоуиз

Section 3.1.1 (7a)

Lean Zone Pressure History

Production Summary

WP01	Cumulative
Oil (m³)	31,570
Water (m ³)	117,814
WOR (m ³ /m ³)	3.6
Steam Injection (m ³)	171,092
SOR (m ³ /m ³)	5.4
WSR (m ³ /m ³)	0.68
WP02 **	Cumulative
WP02 ** Oil (m ³)	Cumulative 12,813
WP02 ** Oil (m ³) Water (m ³)	Cumulative 12,813 52,496
WP02 ** Oil (m ³) Water (m ³) WOR (m ³ /m ³)	Cumulative 12,813 52,496 4.09
WP02 ** Oil (m ³) Water (m ³) WOR (m ³ /m ³) Steam Injection (m ³)	Cumulative 12,813 52,496 4.09 92,359
WP02 ** Oil (m ³) Water (m ³) WOR (m ³ /m ³) Steam Injection (m ³) SOR (m ³ /m ³)	Cumulative 12,813 52,496 4.09 92,359 7.2

•Significant steam losses to lean zone to maintain pressure.

•WP01 steam injection volumes include steam injected into P01

•WP01 water does not include quench

Section 3.1.1(7)
2014 Key learnings

WP1 and WP2 learnings

- Conventional circulation is challenging for low pressure shallow reservoirs such as Grand Rapids
- Reheating of circulated fluids and deviated well trajectory both contribute to creation of hot spot
- Hot spots are difficult to remediate after development and recompletions are necessary to alleviate hotspot issues
- Sand influx is not an issue in wellbore perforation
- Thermocouple failures for observation wells can be mitigated by increasing battery capacity and decreasing frequency of data acquisition
 - Reduces loss of communication thus improving consistency of data

Future Plans

Learnings to be applied in future

- Completion for startup using vacuum insulated tubing (VIT) enables high quality steam downhole
- Managing lean zone is important to achieving conformance
- Even steam distribution along the injector can be achieved with steam subs

Future plans

- Well Pair 3 drill and complete Q1/Q2 2015
- Complete observation well 103/16-3-82-23W4
- Continuing operation of Well Pairs 1 and 2
- Directive 51 application for Well Pair 3

Section 3.1.1 (8a-c)

Subsection 3.1.2

Surface Operations,

Compliance,

Non-Related Resource Evaluation Issues

Plant performance

- Battery code for Pad 26 is solely for purpose of production accounting
- All emulsion fluids are transferred to Pelican Lake 11-7 battery

Water treatment

- Disposed fluids injected into one disposal well at 09-10-082-23W4M
- Fresh water for steam generation is treated at Pad 26 using ion-exchange water softening

Bitumen treatment

 No oil treating equipment at the pilot site as all production is transferred to Pelican Lake battery (AB BT0058285)

Steam generation

- Three steam generators use source water (01-15-082-23W4)
- Pad 9 (13-07-082-22W4) water used in <u>upset conditions only</u>

General facility performance

- Upgraded two boiler operating systems for improved control
- Steam quality estimated at 99% at injection wellheads

Plant Performance (continued)

- Emulsion pipeline to battery temperature limited to 55°C
 - Produced water temperature has increased from 40 to 80°C over the past 2 years
 - Production constraint reduced by installing Pad 9 quench to emulsion line out
 - Service change to the Heat Exchanger Shell and Tube Reverse emulsion and BFW to test improved efficiency and aid in cooling pipeline for emulsion out
 - No significant improvement in heat exchanger performance
- Modifications to boiler
 - Upgraded operating systems from manual linkage to an automated system for better control and tuned to improved efficiency
- No debottlenecking of facility or major MOC's

Section 3.1.2(1d)

MARP (Measurement, Accounting and Reporting Plan)

Section 3.1.2(2)

село/из

43

Measurement and reporting

Estimated well production (oil and water)

- Pad 26 production is estimated by applying manual cuts to total measured volume at wellhead and measurement by difference
- Coriolis meters have proven to be an effective measurement at the pad as amounts of entrained gas and/or vapor are negligible and do not affect accuracy (difference of <2% for quarterly tests)
- All produced fluids are transferred to Pelican Lake 11-7 battery (AB BT0058285) for separation and all produced water is used for injection within scheme approval 9404K
- Proration Factor (PF) = $\frac{\text{Total P01 and P02 production}}{\text{Estimated production from well tests}}$

Section 3.1.2 (2a)

Proration factors

Month	Water Proration Factor	Oil Proration Factor
January	1.22415	1.02967
February	1.12636	0.99694
March	0.99166	0.98848
April	0.99946	0.9995
Мау	0.99934	0.99986
June	0.99595	0.99593
July	0.99666	1.0089
August	0.99827	1.00257
September	0.99733	1.00327
October	0.99901	0.99653
November	0.89756	0.98867
December	1.00247	0.98022

селоуиз	45

Measurement and reporting (continued)

Estimated well production (gas)

- Total gas production is obtained from a meter measuring the amount of production gas going to the incinerator
- Gas proration for each production well is calculated using the gas ratio determined from saturation conditions of the casing gas at the well head

Estimation of water production at injection facility

- Total dispositions includes steam injection and water to disposal
- Total receipts includes source water (01-15-082-23W4) and Pad 9 quench water (13-07-082-22W4) to Pelican Lake battery pipeline

Section 3.1.2 (2a)

Gas usage

- Fuel gas purchased from TCPL for running steam generators and incinerator
- Gas Balance
 - All produced gas volumes are incinerated
 - Gas has high CO_2 content at $\geq 70\%$
 - No flare stack
 - No venting of produced gas
 - The only received gas volumes are purchased fuel gas
 - No gas transferred

Section 3.1.2 (2a)

Gas balance

Month	Produced gas (e3m3)	Incinerator gas (e3m3)	Purchased gas (e3m3)
January	17.6	17.6	549.8
February	9.8	9.8	564.9
March	1.6	1.6	578
April	5.1	5.1	671.5
Мау	3.2	3.2	660.9
June	19.1	19.1	615.7
July	20.3	20.3	679.4
August	26.3	26.3	933.3
September	14.1	14.1	940
October	10.6	10.6	737.1
November	11	11	470.1
December	3.9	3.9	418.7

селоуиз

GHG emissions

- Calculation of GHG emissions (CO₂, CH₄, N₂O)
 - Based on fuel gas for running steam generators and incinerator
 - NO_X is not a GHG emission and is not included in the calculation
- Emission balance
 - Tonnes CO_2 equivalent (CH_4 25 N_2O 298)= CO_2 +(25* CH_4)+(298* N_2O)
- SO₂ calculated from H₂S level in casing gas analysis
 - H₂S samples on average in 2014 too small to measure (TSTM)
- Annual reporting
 - Facility is required to do annual reporting on NO_X and SO_2 , produced gas flow rates, and stack temperatures
 - Facility is *not* required to do annual reporting on GHGs

Section 3.1.2 (2a)

Water Source Wells

- Two source water wells
 - 1. 1F1/01-15-082-23W4 in the Grand Rapids 'B' formation
 - 2. 1F1/13-07-082-22W4 in the Grand Rapids 'B' formation

No brackish water wells

- Source water from Grand Rapids B water well (01-15-082-23W4) is used to generate steam for injection wells
- Raw water from Pad 9 (13-07-082-22W4) is used for management of emulsion temperature in pipelines

Source Water Well Rates

Water Treatment Technology

- Media Filtering
- Primary Strong Acid Cation (SAC)
- Secondary SAC polisher
- Source water for brine regeneration
- Disposal well 105/12-11-082-23W4 located at Pad 26 Abandoned July 2013
- New Disposal well 102/9-10-82-23W4 drilled and cased to Nisku Fm, July 2013
 - Fluids trucked from site during 2013 until new Disposal approval received February 26, 2014

Section 3.1.2 (4 & 5)

Disposal Well Rates (102/09-10-082-23W4)

Water balance

Month	Steam (m3)	Produced water (m3)	Receipts (m3)	Disposal (m3)	Dispositions (m3)
January	5217.6	7788.4	5314.8	991.6	13103.2
February	4120.2	15165.1	7266.3	4127.2	15165.1
March	4131.5	6336.6	4047.5	4114.2	10384.1
April	4411.4	7249.6	5682.3	5693.1	12931.9
May	4851.6	7226.1	5735.2	4645.7	12961.3
June	3417.2	6126	5654	5659.2	11780
July	4061.3	5129	5987.6	6203.8	11116.6
August	4748	8679.7	7758.3	9551.6	16438
September	5569.1	5043.2	5272.4	9119.2	10315.6
October	2992.3	3839.1	4142.7	7231.3	7981.8
November	2406.7	4769.8	6994.1	3638.5	11763.9
December	3801.7	4389.3	3329.3	3095.7	7718.6

Sulphur production

- Casing gas is sampled for H2S upstream of the incinerator on a monthly basis
- Based on the calculated sulphur content, the facility is not required to complete quarterly sulphur emissions reporting
- Estimated 2014 sulphur emissions are approximately 0.002 tonnes

Emissions have been low to date and we *do not* expect an increase in sour gas production over time.

Environment Update

• No environmental or regulatory compliance issues

Section 3.1.2 (7a-e)

Future Plans

2015

- Well pair 3: tie-in and turnover to operations for circulation and SAGD
- Directive 42: 2014 MARP submission (June 2015 extension)

Section 3.1.2 (10a-d)

Appendices селоуиз

ECA ECOG A8 BRINT 8-10-82-23

100/08-10-082-23W4 LSD 8-10-82-23W4M

ECA ECOG A9 BRINT 9-10-82-23

100/09-10-082-23W4 LSD 9-10-82-23W4M

CVE BRINT 4-11-82-23

100/04-11-082-23W4 LSD 4-11-82-23W4M

CVE 2C13 BRINT 13-2-82-23

103/13-02-082-23W4 LSD 13-2-82-23W4M

ҁҽӆѹ҉ӥҙ

ECA ECOG B3 BRINT 3-11-82-23

102/03-11-082-23W4 LSD 3-11-82-23W4M

CVE C12 BRINT 12-11-82-23

103/12-11-082-23W4 LSD 12-11-82-23W4M

ҁҽӆѹѵӥҙ

Section 3.1.1 (5c)

64

CVE BRINT 4-27-82-22

100/04-27-082-22W4 LSD 4-27-82-22W4M

Section 3.1.1 (5c)

65

CVE WS2 BRINT 13-7-82-22

1F2/13-07-082-22W4 LSD 13-7-82-22W4M

2003 Camp Water Supply Well No. 16-07

1F1/16-07-082-22W4 LSD 16-7-82-22W4M

CVE BRINT 8-10-82-23

102/08-10-082-23W4 LSD 8-10-82-23W4M

селоуиз

Section 3.1.1 (5c)

68

CVE 2B BRINT 5-11-82-23

103/05-11-082-23W4 LSD 5-11-82-23W4M

Intended Purpose:

Pressure and Temperature through Grand Rapids A steam chamber

Section 3.1.1 (5c)

69

CVE B6 BRINT 6-11-82-23

ECA ECOG B5 BRINT 5-11-82-23

102/05-11-082-23W4 LSD 5-11-82-23W4M

село/и

ECA ECOG C13 BRINT 13-2-82-23

102/13-02-082-23W4 LSD 13-2-82-23W4M

CVE BRINTNELL 12-2-82-23

103/12-02-082-23W4 LSD 12-2-82-23W4M

Section 3.1.1 (5c)

CVE BRINT 1-10-82-23

селоуиз

Section 3.1.1 (5c)

CVE BRINT 16-3-82-23

102/16-03-082-23W4 LSD 16-3-82-23W4M

Section 3.1.1 (5c)

CVE BRINT 9-3-82-23

100/09-03-082-23W4 LSD 9-3-82-23W4M

Section 3.1.1 (5c)

CVE BRINT 16-3-82-23

100/16-03-082-23W4 LSD 16-3-82-23W4M

Section 3.1.1 (5c)

1AA/16-03-082-23W4 LSD 16-03-82-23W4

Intended Purpose:

Pressure and Temperature through Grand Rapids A steam chamber

Section 3.1.1 (5c)