analora Energy corporation

Sawn Lake Single SAGD Wellpair Demonstration Project Peace River Oil Sands Region Scheme Approval 11341A Alberta Energy Regulator (AER) Annual D54 Performance Presentation Craig Pichach, VP Operations, October 22 2015

Cautionary Statement

This presentation contains forward looking statements which involve subjective judgment and analysis and are subject to significant uncertainties, risks and contingencies including those risk factors associated with the oil and gas industry, many of which are outside the control of and may be unknown to Andora. No representation, warranty or assurance, express or implied, is given or made in relation to any forward looking statement. In particular, no representation, warranty or assumption, express or implied, is given in relation to any underlying assumption or that any forward looking statement will be achieved. Actual and future events may vary materially from the forward looking statements and the assumptions on which the forward looking statements were based.

Given these uncertainties, readers are cautioned not to place undue reliance on such forward looking statements, and should rely on their own independent enquiries, investigations and advice regarding information contained in this presentation. Any reliance by a reader on the information contained in the readers own risk.

Andora and its related bodies corporate and affiliates and their respective directors, partners, employees, agents and advisors disclaim any liability for any direct, indirect or consequential loss or damages suffered by a person or persons as a result of relying on any statement in, or omission from, this presentation. Subject to any continuing obligations under applicable law or any relevant listing rules, Andora disclaims any obligation or undertaking to disseminate any updates or revisions to any forward looking statements in this presentation to reflect any change in expectations in relation to any forward looking statements or any such change in events, conditions or circumstances on which any such statements were based.

Agenda (Subsurface)

 1 Introduction and Sawn Lake Single Wellpair SAGD Demonstration Project Overview

2 Geology / Geoscience

Subsection 3.1.1 (2) Geology and Geophysics

3 Drilling and Completions

- Subsection 3.1.1 (3) Drilling and Completions
- Subsection 3.1.1 (4) Artificial Lift
- Subsection 3.1.1 (5) Instrumentation In Wells

4 Scheme Performance - Subsurface

Subsection 3.1.1 (7) Scheme Performance

5 Future Plans - Subsurface

Subsection 3.1.1 (8) Future Plans

Agenda (Surface Operations)

6 Facilities

- Subsection 3.1.2 (1) Facilities
- Subsection 3.1.2 (2) Facility Performance

7 Measurement and Reporting

Subsection 3.1.2 (3) Measurement and Reporting

8 Water Source and Disposal

 Subsection 3.1.2 (4) Water Production, Injection and Use

9 Environmental

- Subsection 3.1.2 (5) Sulphur Production
- Subsection 3.1.2 (6) Environmental Issues

10 Compliance Statement

- Subsection 3.1.2 (7/8) Compliance
- 11 Future Plans Facilities
- Subsection 3.1.2 (9) Future Plans

Introduction and Overview

Sawn Lake Location Map

Sawn Lake – Land (Andora)

- Sawn Lake North
 - 10% of 51 sections (non-operated)
 - 100% of 9 sections
- Sawn Lake Central
 - 50% of 12 sections
 - Designated Operator;
 - Approved Commercial SAGD Site

Sawn Lake South

• 100% of 16 sections

(Gross 100%)	SAGD Contingent Resource Estimate (MMbbl)		
	High	Best	Low
Sawn Lake	428.5	366.9	333.2

▲ SAGD Project Location

Sawn Lake Single WP Pilot Overview

AER Scheme Approval: **11341A** One (1) SAGD wellpair Pilot Facility at 7-30-91-12W5 Target formation is the Bluesky Traditional SAGD recovery process Andora Energy is Operator.

Dark Green Area >20m pay Green 15-20m pay Light Green <15m pay

Single SAGD Wellpair Project Overview

Using Steam Assisted Gravity Drainage (SAGD) to recover bitumen from the Bluesky formation.

Sawn Lake Project Background

- Andora has working interests in 88 sections of Oil Sands Leases all in primary term
- Andora's Focus Operated Leases 740307A365, 7403070363 & 7408030779
- 2005 2007 Resource Evaluation and Asset Consolidation
 - > 100 Legacy wells, Sawn Lake Slave Point Exploration & Development
 - 3 Andora (Signet) Horizontal Wells
 - 9 Andora (Signet) Vertical Wells
 - ~ 200km 2D seismic
 - Andora Acquired 18km² 3D Seismic over SAGD Project Location
- 2008 2009 Application to ERCB for SAGD Demonstration in Sawn Lake
- August 2009, ERCB Commercial Scheme Approval for SAGD demonstration project in South Sawn Lake
- 2009 2010 build all season access road and pipeline right of way into 15-21 site (disposal well, source water well)

Demonstration Project Applications

Single Wellpair SAGD Demonstration Project Application Timeline

- 2008 Sawn Lake SAGD Demonstration Project Application to the ERCB
- 2008 Sawn Lake SAGD Demonstration Project Supplemental Information Request #1
- 2008 Sawn Lake SAGD Demonstration Project Supplemental Information Request #2
- 2012 Sawn Lake SAGD Demonstration Project D78 Project Amendment (7-30 Application)
- 2013 Sawn Lake SAGD Demonstration Project D78 Project Amendment Supplemental Information Request
- 2013 Sawn Lake Measurement, Accounting and Reporting Plan (MARP)

Future Applications (Not Implemented)

- 2014 D78 Category 2 2U/2L SAGD Wellpair; Approved
- 2015 D78 Category 1 Produced Water Boiler (PWB) Trial.; Approved

Future Applications / Approvals

Single Wellpair SAGD Demonstration Project Approvals and Licences

- AER Approval 11341A (7-30) 2013
- AER Approval of MARP (2013)
- AER Approval for Disposal Well (D51) 1775897; well W0420620
- AER Approval for Class II Disposal Well (D65) 12169
- Approved Fuel Gas P/L Licence 55565
- Approved Source Well P/L Licence 55566
- Approved Disposal Well P/L Licence 55567
- Approved 1U/16-30-91-12W5 (Injector) Licence 0457964
- Approved 1L/16-30-91-12W5 (Producer) Licence 0457960
- Approved F46733 Bitumen Battery Facility Licence
- EPEA Approval 00247729-00-01
- Approved Plan 1076969MS-2013-10-08
- Water Act Approval Licence 00361158-00-00

Subsurface – Geology and Geophysics

Sawn Lake – Geological Setting

Peace River Region – Oil Sands Deposits & Major Projects Peace River Region – Oil Sands Geological Schematic Cross Section

Pre Cretaceous Unconformity

Sawn Lake – Core & 3D Seismic Data

Sawn Lake – 2D Seismic Data

> +200 km 2D seismic data

Ճ SAGD Project Location

Sawn Lake – Type Well

Sawn Lake - Bluesky Net Pay

Sawn Lake - Regional Cross Section

Regional Cross Section
 NW – SE through the
 "Tide Dominated Delta"

Sawn Lake – Regional Cross Section NW-SE

> Thick continuous Oil Sands Reservoir within the "Paleo Valley"

Sawn Lake – Devonian Structure

Sawn Lake – Base Bluesky Structure

Sawn Lake – Top Bluesky Pay Structure

Sawn Lake – Top Bluesky Structure

Sawn Lake – Bottom Water

Sawn Lake - Bluesky Net Pay

Sawn Lake – SAGD Test Key Zones

Thick Clean Heavily Oil Saturated

* Dominant Zone Type

* Thin & aerially constrained Zone Type

1U/1L Wellpair

Bottom Hole

L.S.16

30.18m Theoretical S Government Road Allowance

1U/16-30

4 Water Wells

Penn West

-0-10-30

CAUTION Possible Collision

Sawn Lake – 1U/1L Wellpair

1U/1L wellpair

- Wellpair 50m SE of existing horizontal core well.7-30-91-12W5 core summary shown to left.
- Producer landed at 657.5-658m (base of Z1) to avoid potential complications and give pilot best chance of success. Injector 5m higher at 652m
- Base Temp 17degC, Base Reservoir Pressure: 2280kPag Average So = 0.6 Average H = 18m Average θ_1 = 0.29 Average Kh = 4.3D Average Kv = 3.6D

Bitumen in Place (OBIP)

$$\begin{split} OBIP &= A \times h_1 \times S_{o_1} \times \theta_1 \times B_o \\ &= (100m \times 805m) \times 18m \times 0.6 \times 0.29 \times 1 \\ &= 252,126m^3 \end{split}$$

Sawn Lake - Bluesky Net Pay

andora

- Sawn Lake Field
 - 39 contiguous sections with > 10 meters of pay and excess of 2 Billion Gross Barrels of Bitumen in Place
 - 6.5 sections with > 20 meters of pay and ~
 0.5 Billion Gross Barrels of Bitumen in Place, ~ 30% Porosity, ~70% Oil Saturation
 - Areas with no complication, bottom water, top lean zones identified; strategy is Low Pressure SAGD (LP SAGD) operating with steam chamber pressure close to base reservoir pressure
 - Base Reservoir Pressure identified as ~3200kPag at ~650m TVD.
 - Pilot Placed at 7-30-91-12W5 drilled to BH 16-30-91-12W5 (no complications)

Sawn Lake - 2-32-91-12W5 Core

≻ 2-32-91-12W5

Porosity vs. Permeability

Depth vs. Permeability

Depth vs. Oil Saturation

Sawn Lake – Petrography

> 16-20-91-12W5 (673.5 m)

> XRD Analysis

	2-32-91-12W5	16-20-91-12W5	
Depth Interval (m)	677.5	673.5	
Mineral	Whole Rock Weight %		
Quartz	91	80	
K-Feldspar	1	2	
Plagioclase	0	0	
Anhydrite	0	0	
Calcite	0	0	
Dolomite	Trace	3	
Halite	0	0	
Siderite	0	0	
Pyrite	Trace	Trace	
Total Clay	8	15	
Total	100	100	

Clay Mineral	Relative Clay %		
Smectite	0	0	
Illite / Smectite	0	0	
Illite / Mica	14	14	
Kaolinite	86	86	
Chlorite	0	0	
Total	100	100	

ro

Sawn Lake – Surface Operations

Water Source Well 00/16-20-91-12W5

- Paddy / Cadotte
 Aquifer, 420 mKb
- Fresh Water, ~ 3600
 ppm

Sawn Lake – Surface Operations

> Water Disposal Well 15-21-91-12W5

00/15-21-91-12W5

00/16-29-91-12W5

- Disposal Well
 located on facility site
- Disposing to the Wabamun

Sawn Lake – Surface Operations

Future Potential Saline Source – Bluesky

02/02-32-091-12W5/0

Potential source water is the Bluesky.

Measured/laboratory samples in T091 and T092 R13 suggest the TDS is 14,906 and 23,352 mg/L, respectively.

A DST sample in T091
R13 suggests a TDS of 19,786 mg/L.

 Would require water treatment plant capable of handling saline water (such as PWB).

Sawn Lake – Surface Operations

Future Potential Saline Source – Lower Wabamun Zones

 Usage would require require water treatment plant capable of handling saline water (such as PWB).

Drilling and Completions - Injector

Drilling and Completions – Producer (Circ)

Drilling and Completions - Producer (SAGD)

Drilling and Completions – Well Survey

HALLIBURTON

Project: Sawn Lake (Nad 83) Site: 30-91-12W5M Well: Andora 1L Sawn Lake 7-30/16-30-91-12W5M 16-30(1L) Final Survey

Instrumentation

<u>Injector</u>

Blanket gas for downhole pressure measurement

Producer

- Fiberoptic DTS temperature profile
- X2 P/T Gauge on ESP Suction (heel)
- P/T Gauge on ESP Motor
- X 1 Pressure gauge at Toe
- Casing Gas pressure at surface

Discussion

- Toe Pressure gauge reading lower (~400kPa+) than heel pressure gauges; and has trended down below base reservoir pressure; believed to have failed.
- DTS fiberoptic temperatures were trending with surface temperatures; surface compensation corrected
- Primary subcool on heel pressure, temperature and DTS Avg/High at heel pressure.

Artificial Lift

Artificial Lift provided by Electric Submersible Pump (ESP) due to depth (650m TVD) with low base reservoir pressure (3200kPag)
First ESP lasted from Sept 2015 to May 2015; (9 months); motor failure due to manufacturing fault. Pump showed no sign of sand, well integrity good. Some sign of up-thrust damage from low start up rates (on edge of pump curve).
New ESP downsized to avoid future upthrust potential.

Scheme Performance

Operations Update

May 19, 2014 First Sustained OTSG firing

May 21, 2014 Commenced steam injection on injector and producer (First Steam) at 25-30tpd/wellpair

May 23, 2014 Offloading of liquids in producer and injector

May 23 – Aug 29 2014 SAGD Circulation

Aug 29, 2014 Plant Shut down / Cool down

Sept 9 – 11 2014 Service Rig for ESP and fiberoptic install

Sept 12 2014 Plant Start Up on SAGD mode

Performance Data (Month Cal. Day Avg)

andora

Performance Data (Weekly Averages) - SAGD

Performance Data (Recovery) - SAGD

Performance Data (cSOR / iSOR) - SAGD

Performance Data (Daily) - SAGD

Performance Data (Gas; Weekly Averages) - SAGD

Downhole Pressures

Circulation mode slugging due to tests to confirm steam throughout well.

SAGD mode declines in injection pressure @ const steam rate believed to be due to steam chamber volume expansion and condensation surface area increase (caprock).

Increases in steam injection pressure due to increased steam injection.

Conformance

andora

Sproule (Andora) Expectations Dec31-2014

- Exceeding Sproule "LOW" case [121 bopd @ SOR 8 for 2015; 242 bopd @ SOR 5.7 for 2016 & 2017]
- Exceeding Sproule "BEST" case [173 bopd @ SOR 5.6 for 2015; 345 bopd @ SOR 4 for 2016 & 2017]
- Aiming to exceed "HIGH" case of [224 bopd @ SOR 4.3 for 2015; 449 bopd @ SOR 3.1 for 2016 & 2017]
- Can inject more steam than predicted by Sproule [>380 tpd actual vs. 208 tpd Sproule] which could mean more production.

16-30-091-12W5 Pilot Well Forecasts

Low Estimate Contingent Resources						Dest countrie contingent Resources				High Estimate Condingent Resources									
Year	Bitumen Rate bbl/d	Water Rate bbl/d	Steam 100% Quality bbl/d	SOR	CSOR	_	Year	Bitumen Rate bbl/d	Water Rate bbl/d	Steam 100% Quality bbl/d	SOR	CSOR		Year	Bitumen Rate bbl/d	Water Rate bbl/d	Steam 100% Quality bbl/d	SOR	CSOR
2015	121	918	966	8.0	8.0		2015	173	918	966	5.6	5.6		2015	224	918	966	4.3	4.3
2016	242	1.311	1,380	5.7	6.5		2016	345	1.311	1.380	4.0	4.5		2016	449	1.311	1,380	3.1	3.5
2017	242	1.311	1,380	5.7	6.2		2017	345	1.311	1,380	4.0	4.3		2017	449	1.311	1,380	3.1	3.3
2018	242	1,382	1,455	6.0	6.1		2018	345	1,382	1,455	4.2	4.3		2018	449	1,382	1,455	3.2	3.3
2019	242	1,453	1,529	6.3	6.2		2019	345	1,453	1,529	4.4	4.3		2019	449	1,453	1,529	3.4	3.3
2020	242	1,524	1,604	6.6	6.3		2020	345	1,524	1,604	4.6	4.4		2020	449	1,524	1,604	3.6	3.4
2021	242	1,594	1,678	6.9	6.4		2021	345	1,594	1,678	4.9	4.5		2021	449	1,594	1,678	3.7	3.4
2022	173	1,194	1,257	7.3	6.5		2022	247	1,194	1,257	5.1	4.5		2022	322	1,194	1,257	3.9	3.5
2023	124	893	940	7.6	6.5		2023	178	893	940	5.3	4.6		2023	231	893	940	4.1	3.5
2024	89	667	702	7.9	6.6		2024	127	667	702	5.5	4.6		2024	166	667	702	4.2	3.5
2025	64	497	523	8.2	6.6		2025	91	497	523	5.7	4.6		2025	119	497	523	4.4	3.6
2026	46	370	390	8.5	6.7		2026	66	370	390	5.9	4.7		2026	85	370	390	4.6	3.6
2027	33	275	290	8.8	6.7		2027	47	275	290	6.2	4.7		2027	61	275	290	4.7	3.6
2028	-	-	-	-	-		2028	-	-	-	-	-		2028	-	-	-	-	-
2029	-	-	-	-	-		2029	-	-	-	-	-		2029	-	-	-	-	-
2030	-	-	-	-	-		2030	-	-	-	-	-		2030	-	-	-	-	-
Total [Mbbl]	767	4,890	5,148	CSOR	6.71	T	Total [Mbbl]	1,095	4,890	5,148	CSOR	4.70		Total [Mbbl]	1,424	4,890	5,148	CSOR	3.62

Sawn Lake – 1U/1L Wellpair

1U/1L wellpair

- Production stagnation prior to caprock evidence of penetration to lean zone above Z1.
- Steam injection at 400tpd with injector pressure at 2750kPag further indication of low base reservoir pressure ~2300kPag and good permeability's.
- Further trialing to determine if steam is productive.

Sawn Lake Analyticals

SAWN LAKE ANALYTICALS

Bitumen

Last Analysis September 2015 – 1021kg/m3 density; 7.0API ; generally 7.8API. Sawn Lake bitumen is consistent with a McMurray formation bitumen 7-8API

Produced Gas

Typical SAGD casing gas; small production; 54% methane, 40% CO2, 2% Hydrogen, 1.4% H2S remainder C2+ hydrocarbons.

Produced Water

TDS: 2100mg/L by evaporation, 352mg/L calculated P-Alkalinity 0ppm, M Alkalinity 287ppm, Total Alkalinity 287mg/L Total Hardness: 5mg/L as CaCO3 Silica: 125-141mg/L

Non-Saline Make Up Water

TDS: 3530mg/L by evaporation P-alkalinity 0ppm, M Alkalinity 1648mg/L, Total 1648mg/L Total Hardness: 49mg/L Silica: 3-8mg/L

OIL ANALYSIS

441 - 1							5	2136-201	5-6657
CONTAINER	R IDENTITY		METER ID	WELL LICE	NSE NUMBER		LA	BORATORY FI	LE NUMBER
		Andora E	nergy Corporation						1
			OPERATOR						PAGE
07-30-091-12	W6	Andora S	awn Lake 7-30 Batten	у					
LOC	CATION (UWI)		WELL NAME					KB ELEV (m)	GR ELEV (m)
Sawn Lake						Core L	ab - GP		
F	FIELD OR AREA		POOLOR	ZONE				SAMPLER	
TEST TYPE AND NO).			TEST RECOVER	RY				
Sales Bitumer	n								
		POINT OF SA	AMPLE				SAMPLE	POINT ID	
		PUMPING	FLOWING		GAS LIFT			SWAB	
		WATER	mª/d	OIL		m*/d	GAS		m³/d
TEST INTERVAL or	PERFS (meters)				1.1				
SEPARATOR	RESERVOIR Pres	отнея ssures, kPa (gaug	CONTAINER WHEN SAMPLED	@ CONTAINER WHEN RECEIVED	•c D	SEPARATO	R Tempera	atures, °C	
2015 09 10		2015 09 14	2015 09 18	ML					@ °
DATE SAMPLED (Y	(/M/D) DAT	E RECEIVED (Y/M/D)	DATE ANALYZED (Y/M/D)	ANALYST	r -	AMT. AND TYP	PE CUSHION	MU	D RESISTIVITY
	S	AMPLE PROPERT	IES						
Dark Bro	own				FRACTION	TEMP °C			kP
APPEARANCE OF C	CLEAN OIL	WATER	BS TOT	ALBS&W	DISTILLED		MET	HOD	BAROM PRESS
ABSOLUTE kg/m³ @	DENSITY		API GRAVITY @15	5.6°C			ROOM	°C_	°C
S RECEIVED		ING		7.U					
	ALLENGERAN			CLEANING			DISTIL	LATION S	SUMMARY
SULPHUR	SALI	WAX CONTEN	T POUR POINT S	°C		+			
49.9						+	204 °C NA	PHTHA 2	74 °C KEROSENE
arame/ka									

Surface and Facilities

Project Overview- Facility, Wells, Pipeline

Sawn Lake SAGD Facility

Project Overview– Facility Plot Plan

Project Overview– Facility (Equipment) 0 Ð ROADWAY OFFICE BU-801 LAB BU-811 N.140+00 BU-500 .3M x 36.6M (70'x120') CHEMICAL STORAGE AREA 2/ \$-J. PARK 23 CENTRONIN HUNCHLINOTH SK 334 CHEMICAL Ì TANKS EXISTING OLEARING OUTLINE P-511 MAINTENANCE 3.0Mx12.2M SOFTENER E 356 B-510 Ð SK-510 WAREHOUSE 3.0Mx12.2M SK 356 N.120+00 Ð SK 716 0,0 10 000 5K-308 GEN P-196 SK 703#3 J-399 NIN2 GEN SET#2 SR-702 HP SEP SK-550 **-195** STEAM (T#1 SK 760 EA-756 DUCT DUCT SI SKID (FUT) SK-255 (FUT) TRUCK PUMP SKID мсс SK-XXX MAU BUH-507 REFERENCE EXISTING WELL N. 100 + 00 (OBSERVATION) PL R GW ACC SK-750 P-255 SK-72 N,100+00 VRU 8 **-**25 + 00 15 SK-275 LP FLARE KO DRUM SK-235 V-235 SK-270 RECYCLE ù CHEMICAL AREA 닏 INJECTOR WELL W1-101 ́т_26 SK-230 (UP) SK-230 (UP) SK-230 (UP) FG/HP SK-240 V-234 V-241 LARE SKID N.80+00 SWD BU-265 SKID SK-265 RECIRC T 26 SK-110 15 P-102-ESP WP-102 PRODUCER WELL ĽЪ FUTURE SERVICE RIG 8mx15m JMPJACK 4mx7 SEPARATOR B) 23 SK-205 V-205 PARAT N.60+00 / BU 200 21.3M x 32M SK-212 (⊁ 49° (70'x105') DISPOSAL 4 г-IJ JNE POL SON N.40+00 FL-238 FLARE FL-236 8 8 8 i 00-00 ġ. <u>8</u>, I ģ /ģ 61

Block Flow Diagram

andora

Facility Performance

Equipment

- Oil/Water Separation facility built upon AOSTRA/Devon/Suncor Dover project equipment; equipment refurbishment went well.
 Vessels have passed inspections. Some issues with gasket leaks, have been eliminated through use of modern gaskets.
- New OTSG has passed 1 year run time inspection; no issues.

Emulsion Treating

- Facility on circulation/SAGD start up was unable to meet water content requirement. Following ramp up good success with chemical treatment and high temperature separator. Meeting Tervita/Pembina sales spec 0.5%BS&W and Shell Peace River complex sales spec of 0.35% BS&W. Also exporting to Murphy 1-26. Early start up issues with HTS resulted in excess produced water trucking especially on start up steam circulation required trucking to Custom Treating stations (Gibsons Valleyview, NewAlta Peace River, Secure Judy Creek).
- Plains Midstream Nipisi terminal has been unable to blend (too heavy at 7-8API). Currently exporting to Shell Peace River Complex, Murphy 1-26, Tervita High Prairie.
- Able to meet spec with single High Temperature Separator (HTS) train. Flash Treater in building, not yet hooked up.
- Decision made to proceed with Recycle pumps; should allow for off-spec bitumen from off-spec tank to be recycled through the high temp separator to be brought on-spec.

Facility Performance

Steam Requirements / Plant Pressure Rating

 If 400tpd steam per well is productive than OTSG undersized for x 2 wellpairs; need additional 30-50MMBTU/hr steam generator for 1U/1L. 2U/2L will need to be revisited for additional steam requirements following start up steam circulation if steam injection is shown to be productive. Less than 3000kPag bottom hole pressures, plant could be designed for #600ANSI

Road / Geomembrane Trial

• Issues with truck turn around required improvement project with geomembrane/gravel appears to be a success; trouble free since road improvement project.

ESP Sizing/Scaling

- No sand generation; liner slot size strategy seems to have been successful
- During ESP replacement silica scaling on the production tubing at liquid/steam interface.
- New wells should have a start up ESP as opposed to full-rate ESP to avoid up-thrust damage or use 6 month run-time for first ESP.

Power Generators

 Gensets (x 3 270kW gensets) have issues with respect to switchgear / load sheding causing plant trips. Continuing to work on issues.

Natural Gas

Hydrate issues at nat gas let down; methanol injection commenced.

Facility Performance - Gas

Gas Volumes E3m3

- Note Most Produced Gas is recovered and consumed in the OTSG
- Tank vapors to LP Flare

	Purchased Gas	Produced Gas	Flared Gas
May-14	364.9	0.0	0
Jun-14	688.1	0.0	0
Jul-14	636.3	0.0	5.0
Aug-14	620.6	0.0	3.1
Sep-14	453.2	5.4	1.2
Oct-14	678.0	0.9	0.2
Nov-14	746.4	0.4	0.2
Dec-14	809.8	3.6	2.5
Jan-15	891.5	6.5	6.4
Feb-15	836.0	7.0	7.0
Mar-15	943.7	10.3	10.3
Apr-15	418.6	3.0	2.9
May-15	916.6	5.8	3.9
Jun-15	856.3	4.8	3.9
Jul-15	880.0	11.3	4.0
Aug-15	768.4	8.3	3.3
Sep-15	878.6	12.1	4.0

Facility Performance – Greenhouse Gas Emissions

GREENHOUSE GAS EMISSIONS - SAWN LAKE (May 2014 to Sept 2015)									
	CO2 (tonnes)	N2O (tonnes)	CO2e (tonnes)						
May-14	868.5	0.012	872.05						
Jun-14	1637.7	0.023	1644.44						
Jul-14	1514.4	0.021	1520.65						
Aug-14	1477.0	0.020	1483.13						
Sep-14	1088.0	0.015	1092.48						
Oct-14	1615.3	0.022	1621.93						
Nov-14	1777.1	0.025	1784.40						
Dec-14	1933.6	0.027	1941.61						
Jan-15	2133.1	0.030	2141.92						
Feb-15	2002.0	0.028	2010.24						
Mar-15	2264.0	0.031	2273.34						
Apr-15	1001.4	0.014	1005.58						
May-15	2191.6	0.030	2200.60						
Jun-15	2046.3	0.028	2054.78						
Jul-15	2114.1	0.029	2122.78						
Aug-15	1843.2	0.026	1850.85						
Sep-15	2112.3	0.029	2120.97						

Measurement and Reporting

MARP

MARP Approved – October 23, 2013

MARP Calibrations ongoing; complete account meter recalibrations for 2015 completed

Reporting Codes:

SAGD Production Facility ABBT 0132513

SAGD injection Facility ABIF 0132513

Water source is 16-20-91-12W5 100162009112W500

Water injection (disposal) is 15-21-091-12W5/100 100042809112W500

SAGD Wellpair Injector: BH 103/16-30-091-12W5/0

SAGD Wellpair Producer: BH 102/16-30-091-12W5/0

MARP

MARP Approved - October 23, 2013

MARP Calibrations on-going; complete account meter recalibrations for 2015 completed

Bitumen Production = Truck receipts (Std Conditions)+ Daily delta LT-2511 (T-251) + Daily delta LT-2521 (T-252) Required adjustment on water cut on start up until chemical program produced on-spec bitumen.

MARP

Gas Production (Battery Facility) = FIT-2314+ FIT-2316 + Estimated solution gas vapors (See Section 6.4). Use of Hysys is permitted in CAPP guide "Estimation of Venting Volumes from Upstream Oil and Gas Facilities". For initial operation of the plant Andora will report low pressure flaring of 2 Sm3 per m3 of bitumen produced.

MARP

Water Production = FIT-2684 (Disposal Meter) + Daily Delta LT-2611 (T-261) + Daily Delta LT-2621 (T-262) – FIT-5553 (Blowdown) Note – Due to flashing across FIT-5553 / scaling; better calc blowdown Blowdown = FIT-3911 – FIT-1014 – FIT-1012

MARP

Pipeline Gas Into Battery Facility = FIT-2411 Fuel Gas Consumed by Battery Facility = FIT-2411+ FIT-2314 - FE-5110 Fuel Gas Disposition from Battery to Injector Facility (Consumed by Injector Facility) = FE-5110

Water Production and Usage

Source Water Well

Source Water Well

- Water Act Approval Licence 00361158-00-00
- Non Saline Source Water Well at 16-30-91-12W5 TDS: 3530mg/L by evaporation P-alkalinity 0ppm, M Alkalinity 1648mg/L, Total 1648mg/L Total Hardness: 49mg/L Silica: 3-8mg/L
- Water from the Paddy/Cadotte

Water Recycle

 Andora pilot uses less than 500,000m3 per year of make up water and does not recycle the produced water as per allowance in Directive 081, Section 5.

Water and Waste Well

Produced Water Disposal Well

- AER Approval for Disposal Well (D51) 1775897; well W0420620
- AER Approval for Class II Disposal Well (D65) 12169
- Disposal into Upper Wabamum zone at 15-21-91-12W5
- Well remains near vacuum; injection pressure less than 500kPag

<u>Other</u>

- Tervita High Prairie ABWP0093970
- Tervita Peace River ABWP0090327
- Gibsons Mayerthorpe ABWP0000556;
- NewAlta Peace River (11-07-082-W5M) AB WP 0097804
- NewAlta Red Earth AB WP 0000663
- Secure Fox 11-36 ABWL0730091

Sawn Lake Source / Disposal Rates

Sawn Lake Monthly Water / Steam Totals

Disposal Well Pressure

Disposal Well approved (D51) for Maximum Wellhead Injection Pressure of 7000kPag; no issues with wellhead injection pressures typically less than 500kPag.

Sulphur Production and Environmental

Sulphur Production

SO2 Production

SO2 Emissions: no exceedances of EPEA Approval Limit.

Regulatory Summary

Emissions

No exceedances on NO2, SO2, H2S

Soil and Groundwater Monitoring

Soil monitoring program on-going; samples taken 2015.

Spills and Clean Up

October 5, 2015: Andora reported an onsite disposal (produced) water spill – 5m3. Area remediated and confirmed via third party; berm reinforced as requested.

Reclamation Programs

No reclamation programs in 2014/2015

Ground Water Monitoring Program

- The groundwater monitoring program has been designed to monitor for potential impacts to roundwater quality due to operations at the central processing facility (CPF) and thermal-related effects to non-saline potential domestic use aquifers. The program was developed in consideration of the existing draft Alberta Environment and Sustainable Resource Development Groundwater Monitoring Directive (ESRD 2012).
- On March 9, 2015 a deficiency letter was received by Andora Energy from the AER noting that "The thermal effects groundwater monitoring program must include groundwater monitoring wells completed within the deeper non-saline aquifers beneath the site. There are nearby water wells completed within sand and gravel aquifers at approximately 25 mbgl and 150 mbgl that must be protected. Confirm that Andora Energy will install groundwater monitoring wells within these aquifers and provide proposed locations and completion intervals on maps and crosssections."
- Letter sent to AER April 2015 that nearby wellcores show no deeper intervals; May 28, 2015 AER noted that they wanted confirmation no Dunvegan or Wapiti at 7-30-91-12W5.
- September/October 2015 Andora Drilled ground water test hole to 149.5m and drilled and completed 11 proposed shallow ground water wells at 7-30-91-12W5. Shallow Wells complete.
- Hole drilled; no apparent aquifers within the bedrock from cuttings return and drilling response; confirmed by geophysical logging; there are no apparent deep aquifers, just the shallow sand already noted above bedrock roughly around the 17-20m mark.
- Compiling and will submit information to the AER and document baseline measurements.

Compliance, Monitoring and Reclamation

Low Risk Noncompliance

- Inactive IWCP (core wells) suspended without downhole isolation per D13
- Remedial Action: Will bring 1 noncompliant inactive well into compliance per year; wells to be used as future in-field and/or observation wells.

Outside of the above to the best of our knowledge, the Andora Sawn Lake Single Wellpair SAGD Project is currently in compliance with all conditions of its approvals and associated regulatory requirements.

Future Plans

Regulatory

	2015			2016			2017			2018			2019				2020					
	Q1 Q2	2 Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q	2 Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2 C	Q3 Q4
2U/2LWELLPAIR ADDITION TO EXISTING SITE [+400bopd to 800bopd]	AER A	pprov	al																			
PRODUCED WATER BOIL PILOT AND TRIAL	AER su	AE	R ap	prova –	I																	
ADD x2 WELLPAIR TO EXISTING SITE [+800bopd to 1600bopd] ADD x 4 WELLPAIRS AT NEW 8-30 LEASE [+1600bopd to 3200bopd]	-	FEED AEI	R sub	omiss	Ap	prova	al Pe	eriod	AEI	R app	rova	1										

Andora Technology

Patent

 Canadian patent issued (2015-06-16) for Produced Water Boiler (PWB) technology enabling steam generation from SAGD produced water meeting regulatory water recycle requirements on a per well pair scale enabling lower capital SAGD project expansions with mitigated capital requirements and risk.

Background

 Economics of scale surrounding traditional SAGD water recycle technologies have generally required large capital investments to achieve adequate capital intensities. These large scale projects are inflexible once initiated and are susceptible to severe cost overruns

Application

- Produced Water Boiler (PWB) technology allows for low capital intensities at a smaller scale (1000bopd+, \$70MM+) Well pair scaled expansions allow for conversion of pilot facilities to commercial pods that meet regulatory requirements, enable modularization of facilities to reduce costs and optimise well pair placement
- Under development project agreement Andora could test Andora technology at Sawn Lake Demonstration Project
- Elimination of steam/emulsion transmission lines, heat efficencies when coupled with High Temperature Separation, mitigation of OTSG tube rupture risks result in increased environmental and energy performance on a smaller footprint.

Conceptual Regulatory Application

Application Includes:

- Use of existing oil/water production facility (3200bopd), natural gas line, disposal well and in field well.
- Six (6) additional wellpairs for a total of eight (8) SAGD wellpairs
- Six (6) Produced Water Boilers (PWB), Vapor-Recovery-Unit (VRU)
- Additional back up source water well at 8-30-91-12W5.

Conceptual Project Overview

Conceptual Battery Expansion

Pre-invested Emulsion Treating Equipment

Blending / Marketing

- Current plans to export by truck to Shell • Peace River and Murphy batteries along Rainbow Pipeline (Plains Nipisi unable to blend)
- At 3200bopd can existing Keyera crude • / Penn West facilities be used to blend closer to facility and at less cost?
- Synergies with respect to power / diluent • / fuel gas still to be investigated.

Andora Energy Corporation Suite 1505, 505 -3rd Street S.W Calgary Alberta T2P 3E6

Craig Pichach, P.Eng, PMP, B.Sc, B.Mngt Vice President, Operations e: <u>cpichach@andoraenergy.com</u> p: 4032941770 ext230

