

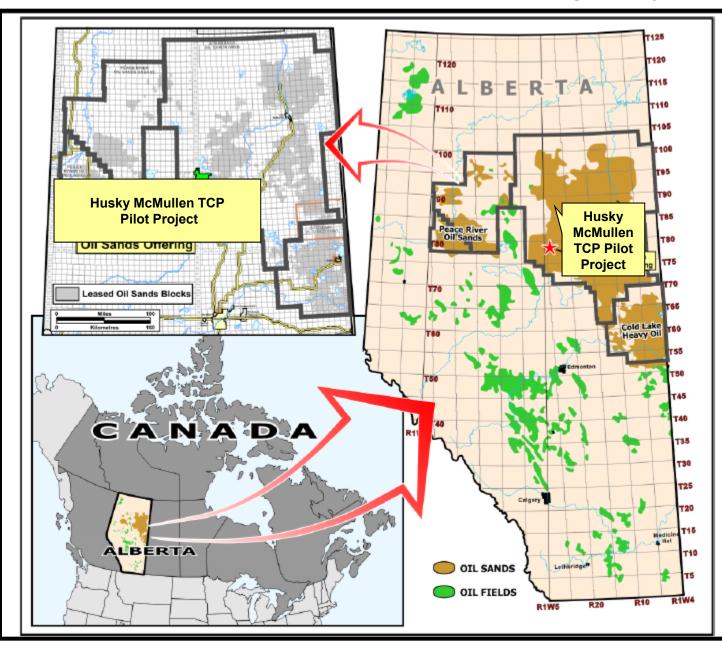
Husky Oil Operations Limited **McMullen Thermal Conduction Process Experimental Pilot Project** Experimental Scheme No. 11541

Annual Performance Presentation

Alberta Energy Regulator

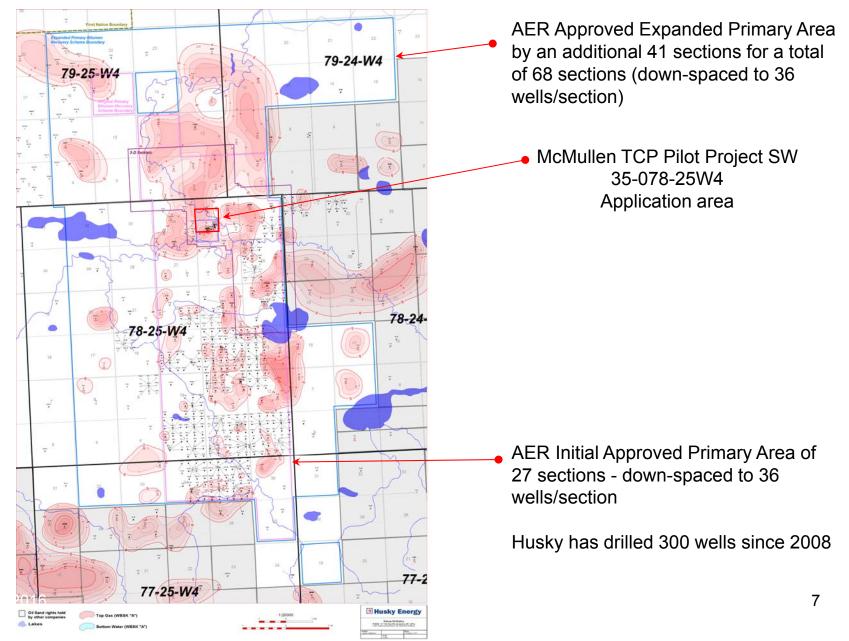
3.1.1 Subsurface Issues – Table of Contents

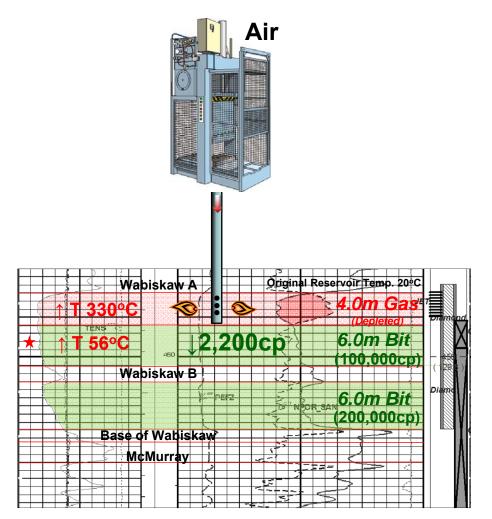
- 1. Brief Background slide 3
- 2. Geology / Geosciences slide 13
- 3. Drilling and Completions slide 31
- 4. Artificial Lift slide 37
- 5. Instrumentation in Wells slide 39
- 6. 4D Seismic slide 41
- 7. Scheme Performance slide 43
- 8. Future Plans slide 72


1. Brief Background

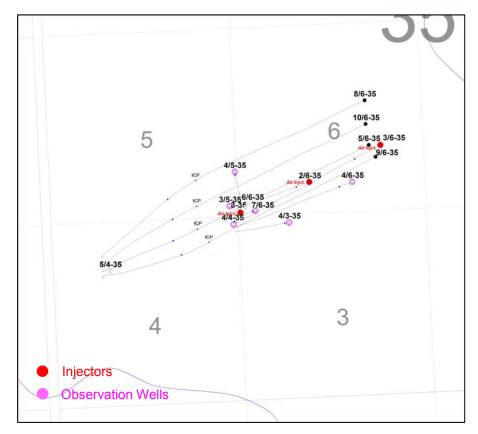
- December 20, 2010 AER issued Experimental Scheme Approval 11541 for the McMullen TCP experimental scheme application (AESRD issued EPEA Approval 265571-00-00 on January 10, 2011)
- January 19, 2012 AER issued Experimental Scheme Approval 11541A for three additional horizontal production wells as a modification to the scheme
- August 7, 2013 AER issued Experimental Scheme Approval 11541B for the handling of sour gas at the facility for all production wells
- October 30, 2013 AER issued Experimental Scheme Approval 11541C to extend the experimental scheme approval and confidentiality period to July 31, 2015
- April 21, 2015 AER issued Experimental Scheme Approval 11541D to extend the experimental scheme approval to July 31, 2018 and confidentiality period to July 31, 2016

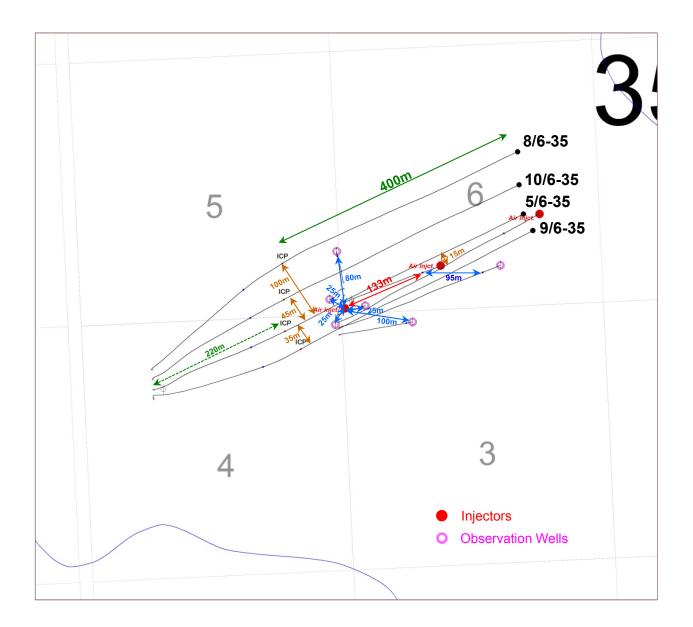
McMullen Thermal Conduction Project (TCP)


5


- Project location is the SW/4 of 35-078-25W4
 - Based on core and log data from 100/03-35-078-25W4 well drilled in November 2008
 - 100/03-35-078-25W4 well has a depleted gas zone of 4 meters in thickness that overlies a bitumen zone of 6 meters in thickness
- Thin bitumen zone of 6 meters has excellent reservoir characteristics
 - Classified as a homogeneous, unconsolidated, clean sand with good porosity, excellent permeability and good oil saturation
- There is no underlying water in contact with the bitumen
- The overlying gas cap has a good seal (Clearwater Shale)

Wabiskaw "A" Project Area Gas Cap Map




- Purpose:
 - Recover bitumen underlying depleted gas cap
- What We Do:
 - Ignite and oxidize residual oil saturation (8-15%) within depleted gas cap
- How We Do it:
 - Ignition process: Steam/Linseed Oil/Steam/Nitrogen/Air (spontaneously combusts)
 - Wait (3-6 months+) for heat to conduct to underlying bitumen
- What We See: (within the depleted gas cap)
 - Combustion zone peak temperature 330°C (burn tube test 600 degrees Celsius (°C))
- What We Need: (within bitumen zone)
 - Heated > 56°C to lower viscosity to less than 2,200cp to start producing
- What We Get:
 - Flow rate 25 m³/day (from 400m HZ Well)
 - Recovery factor > 50%

- 2011/2012 13 wells drilled and facility construction completed
- September 28, 2011 start of temporary steam
- December 8, 2011 start of first air injection
- January 19, 2012 received approval to drill three additional horizontal producers
- October 2012 3rd train air compression added
- November 1, 2012 first horizontal well on production
- October 2013 three additional horizontal wells on production
- September 18, 2014 shut-in of air injection
- October 31, 2015 suspension of Project operations
- July 31, 2016 expiry of confidentiality period

December 2015 - 49 Months after Start of Air Injection:

- Successful ignition and continuous combustion
 - Achieved
- Heating the underlying bitumen through thermal conduction to mobilize the oil
 - As predicted (~25 m³/d; 25-30% BS&W)
- Determine combustion front velocity through the depleted gas zone
 - As predicted
- Determine optimal well spacing for future design of a commercial project
 - Requires Pilot expansion to test new spacing
- No Injected air or combustion gas breakthrough into the horizontal producers
 - Achieved

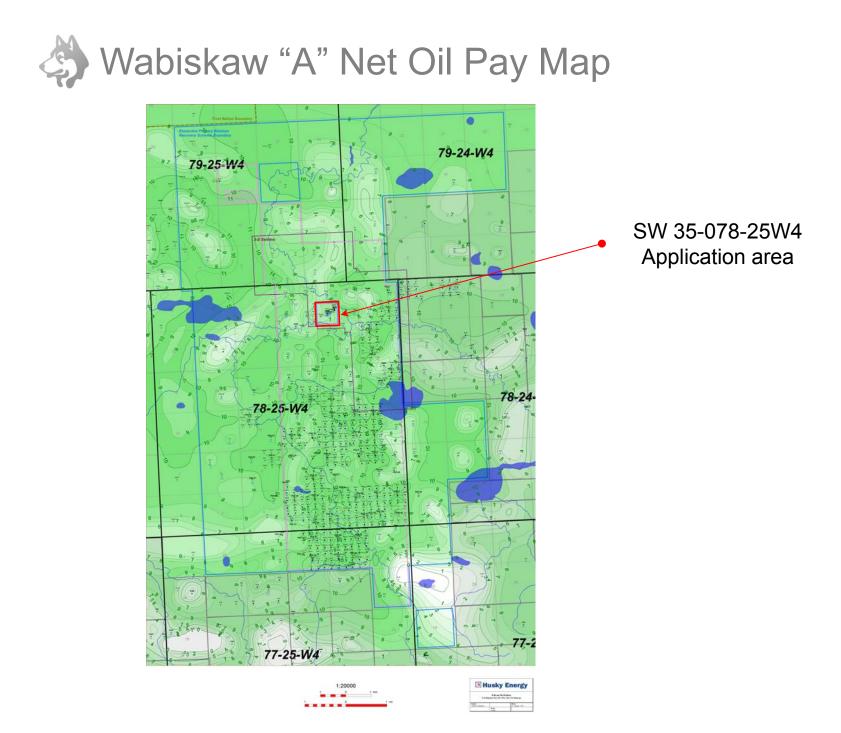
- New innovative technology
 - To recover bitumen underlying a depleted gas cap
- Thermal recovery process
 - Conducts heat downward from the gas zone to the bitumen leg in order to mobilize the oil for production
- Combustion reactions
 - Will be confined to the gas zone and results in high temperature oxidation
- Significant reduction in fresh water usage
 - Over conventional steam assisted methods (Cyclic Steam Stimulation and Steam Assisted Gravity Drainage)
 - Water requirements are for initial steaming only (8311 m³ Cold Water Equivalent (CWE) for the initial heating of the three injectors to ensure ignition when air is injected)

2. Geology / Geosciences

Average Reservoir Parameters:

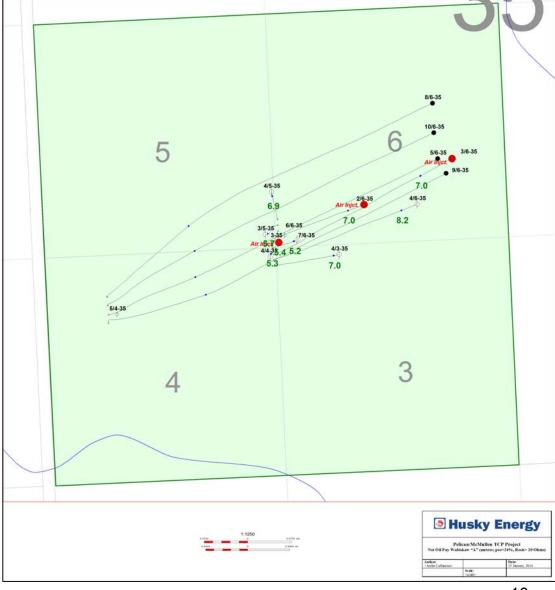
- Net Oil Pay = 6 m
- Porosity = 31%, So = 70%
- Oil FVF = 1.00 m³/m³

Entire approval area - 64 ha (SW/4 section 35-078-25W4)

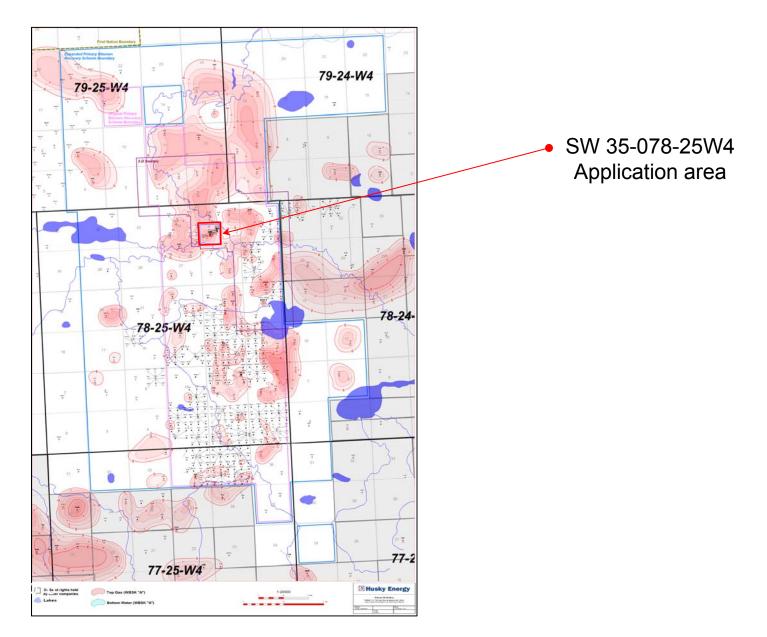

• OBIP = 833 e³m³

Planned operating portion of the Project - 13 ha (prior to shut-in of air injection)

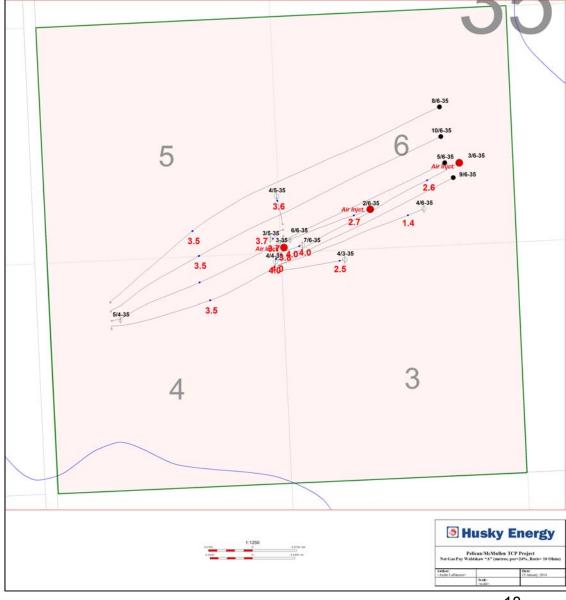
• OBIP = 169 e³m³

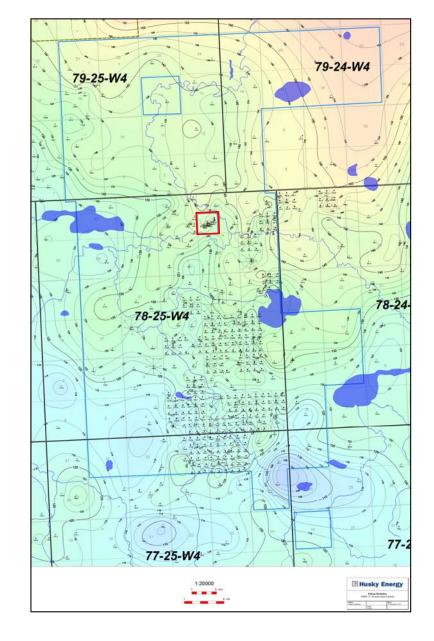

Actual operating portion of the Project - 6 ha (after shut-in of air injection)

- OBIP = 78 e³m³
- The premature shut-in of air injection (and shut-down of combustion) resulted in a smaller portion of the Project being heated than originally estimated. The actual operating portion of the Project (6 ha) is based on an estimated drainage area size of 75 m on either side of the injectors (width) by 400 m long (length of a HZ well).

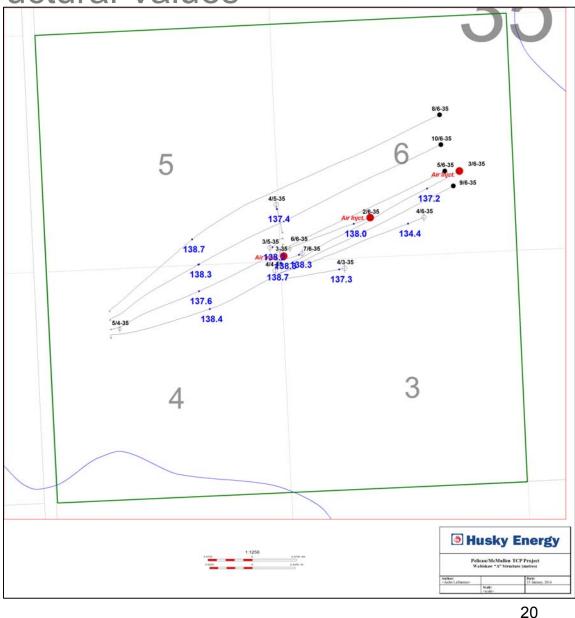


• SW 1/4 of Section 35-078-25W4

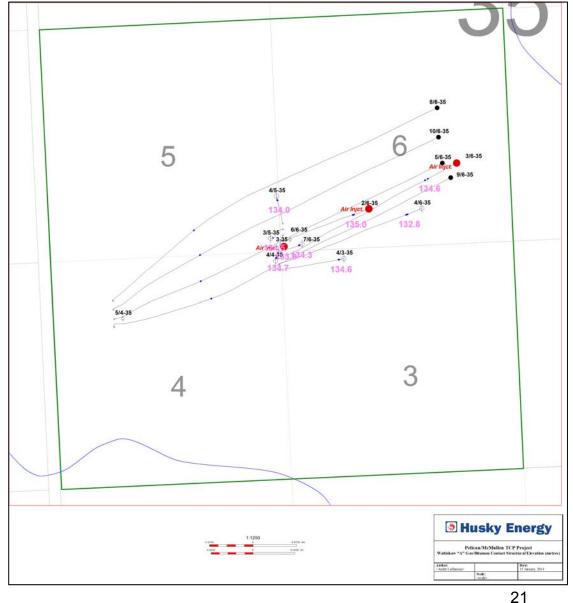


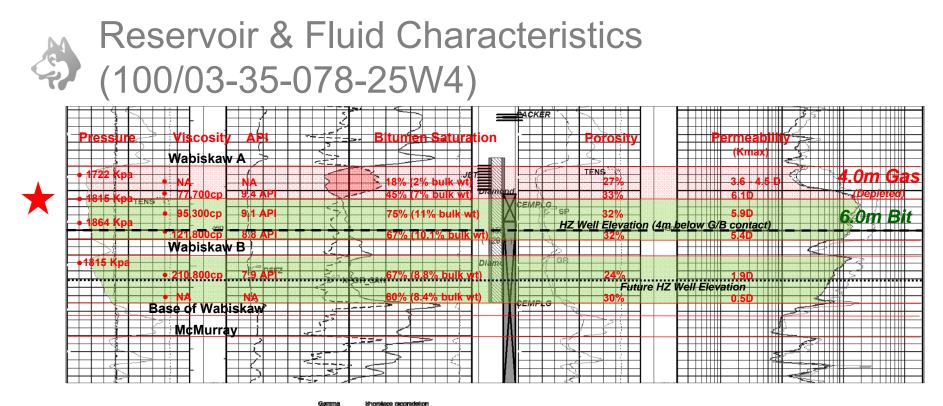


• SW 1/4 of Section 35-078-25W4


• All depths are subsea

19


Wabiskaw "A" Structural Values


- SW 1/4 of Section 35-078-25W4
- All depths are subsea

Wabiskaw "A" Gas/Bitumen Contact Structural Values

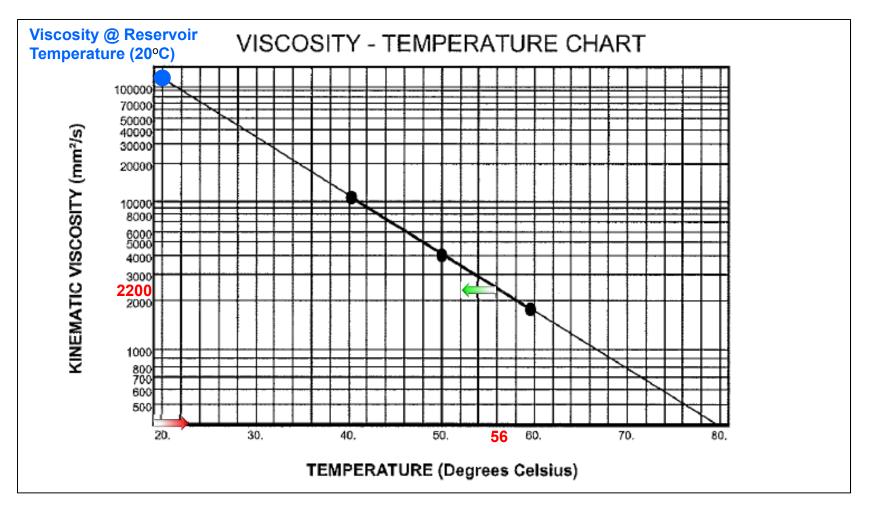
- SW 1/4 of Section 35-078-25W4
- All depths are subsea

Ollahon

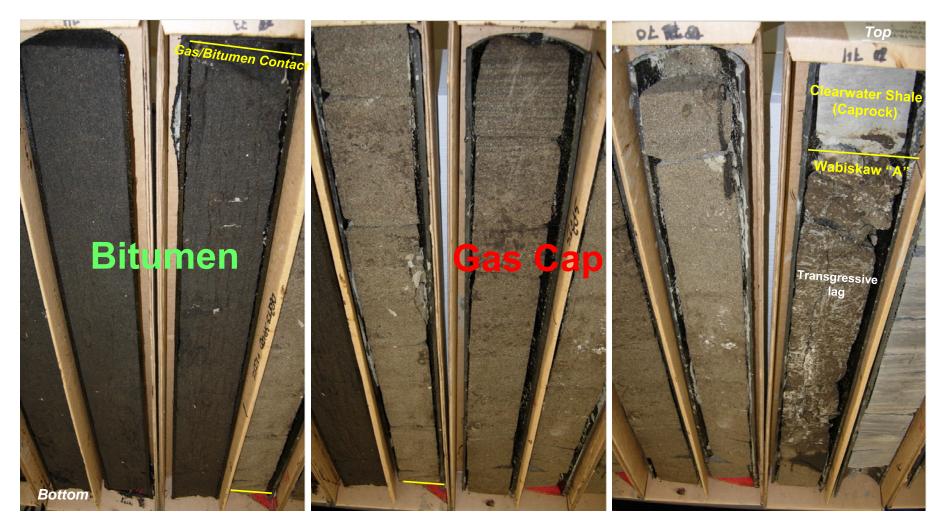
WABISKAW "A"

Marine Shoreline Deposit

- Fine-grained
- Coarsening upward
- Homogeneous & continuous
- Unconsolidated sand



- Drilling Depth: ≈ 450m
- Porosity: ≈ 31%
- Permeability: ≈ 5 Darcies
- Net Pay: ≈ 6m
- Oil Saturation: ≈ 70%
- TAN: 1.3
- Viscosity (core): Average 122,000 cp
- Viscosity (prod): Average 190,000 cp
- API: 8.8
- Pressure (current) : ≈ 2,200 kPa (December 2015)


Well 100/03-35-078-25W4

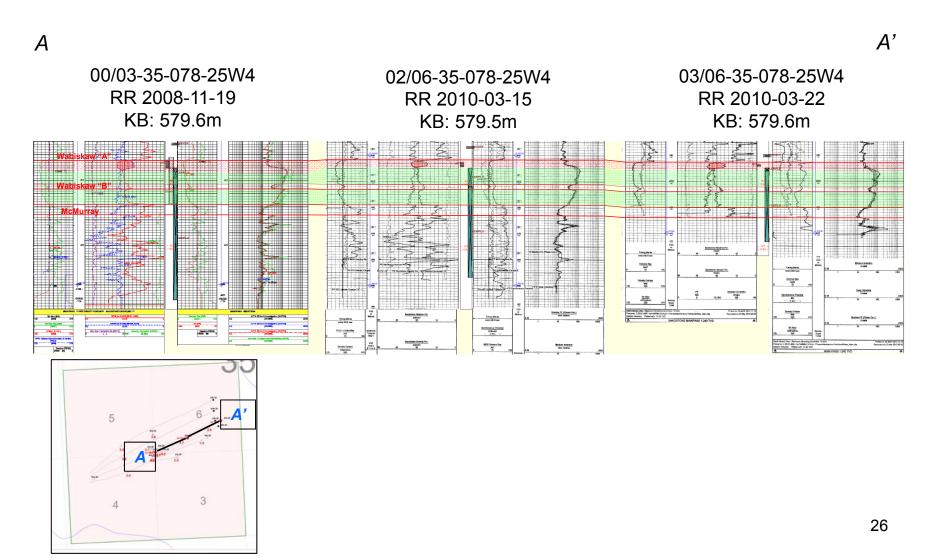
• Oil Viscosity (4 m below the Gas Cap)

Fluid Contacts – Well 100/03-35-078-25W4

Mineral Composition in the Gas and Bitumen zones – Well 102/03-35-078-25W4

	FFRACTION ANALYSIS vined mineral analysis)						
Company: File No: Analyst:	Husky Energy Inc. 52135-08-2307B S.H						
	Gas Zone Bitumen Zone						
	Husky 102 Pelican 3-35-78-25		Husky 1	02 Pelican 3-	35-78-25		
Sample ID	OB2	OB3	OB4	OB5	OB7	OB8	
Depth Interval (m)	443.75	445.3	447.75	450.2	455.45	458.35	
Mineral	Whole Rock Weight %	Whole Rock Weight %					
Quartz	93	96	94	94	93	81	
K-Feldspar	0	0	1	1	1	2	
Plagioclase	0	0	0	0	0	0	
Anhydrite	0	0	0	0	0	0	
Calcite	0	0	0	0	0	0	
Dolomite	0	0	0	0	0	0	
Halite	0	0	0	0	0	0	
Siderite	0	0	0	0	0	0	
Pyrite	0	0	Trace	Trace	Trace	1	
Total Clay	7	4	5	5	6	16	
Total	100	100	100	100	100	100	
Clay Mineral	Relative Clay %		R	elative Clay	%		
Smectite	0	0	0	0	0	0	
Illite / Smectite *	3	8	4	5	9	7	
Illite	37	28	33	34	33	34	
Kaolinite	21	41	36	32	31	40	
Chlorite	39	23	27	29	27	19	
Total	100	100	100	100	100	100	

* Illite / Smectite Mixed-Layer Clay

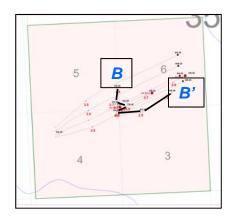

The percentage of	
smectite layers in	60-70%
illite / smectite clay	

Due to inherent limitations in X-ray diffraction quantification, results must be considered semi-quantitative.

Structural Cross-Section

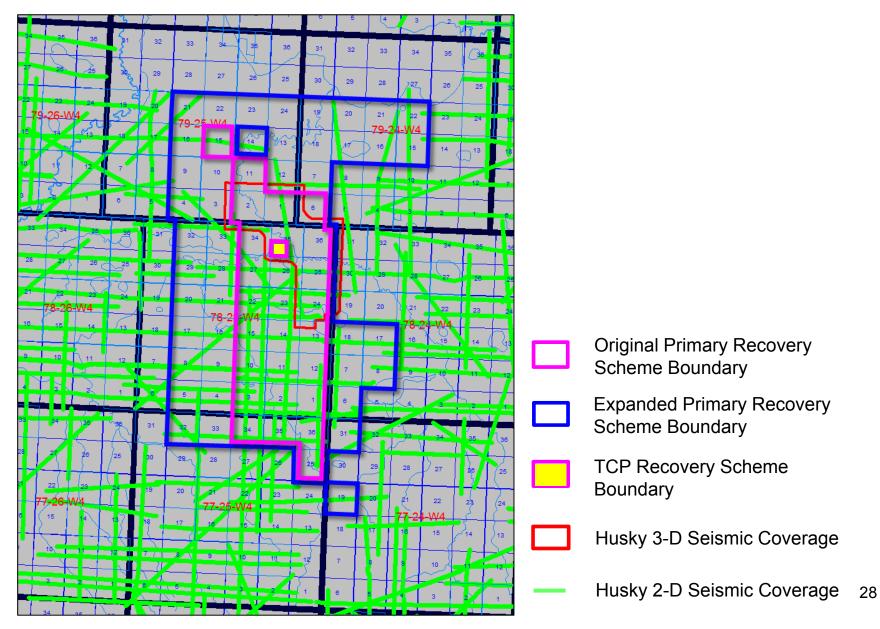
• Structural cross-section between the three injector wells

• Structural cross-section between the six observation wells


В

- 1980 Pro - 1997

Β'


04/05-35-078-25W4 RR 2011-03-11 KB: 578.8m	03/05-35-078-25W4 RR 2011-03-16 KB: 579.5m	07/06-35-078-25W4 RR 2011-03-20 KB: 579.3m	04/04-35-078-25W4 RR 2011-03-29 KB: 579.7m	04/03-35-078-25W4 RR 2011-04-04 KB: 579.6m	04/06-35-078-25W4 RR 2011-03-26 KB: 579.6m
Webskew 22					All with

Seismic Coverage

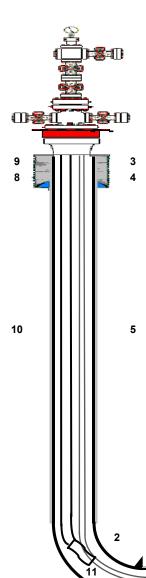
- Caprock (overlying Wabiskaw "A")
 - Clearwater shale sequence (~95 meters thick)
- Pilot mini-frac test
 - Conducted in March 2010 on the 14-36-078-25W4 well (RR October 18, 2008)
 - Interpreted in-situ minimum stress in cap rock shale = 8,200 kPa
 - Fracture gradient = 18.51 kPa/m
- AER Scheme Maximum Operating Pressure Approval: 5,000 kPa
- Injection pressures
 - During steaming phase: 2,200 2,500 kPa
 - During air injection phase: 2,800 3,000 kPa (prior to shut-in air injection)
 - Air injection shut-in: September 18, 2014
 - Current reservoir pressure: ~ 2,200 kPa (December 2015)

- Surface heave monitoring is not required
 - due to the small volume of steam that was injected (8,311 m³ CWE) prior to the start of continuous air injection

3. Drilling and Completions

Thermal Cement Temperature Ratings

Well	Type of Well	Temperature Rating (degrees Celsius)	Type of Cement
105/06-35-078-25W4	Horizontal	1000	LDP-C-310+0.20% SMS + 0.15% CDF-4P+0.40% CFL-6+0.30%+0.40% CFL-4
108/06-35-078-25W4	Horizontal	1000	LDP-C-310+1%CFR-5+0.5% CFL-3+0.3% CitricAcid+6%Gypsum+1%TAE+0.15%CDF-4P
109/06-35-078-25W4	Horizontal	1000	LDP-C-310+1%CFR-5+0.5% CFL-3+0.3% Citric Acid+6%Gypsum+1%TAE+0.15%CDF 4P
110/06-35-078-25W4	Horizontal	1000	LDP-C-310+1%CFR-5+0.5% CFL-3+0.3% Citric Acid+6%Gypsum+1%TAE+0.15%CDF-4P
100/03-35-078-25W4	Air Injection	360	Thermal 40 Expandomix + 1.00% CaCl2 + 0.25% CFR-2 + 0.35% CFL-3
102/06-35-078-25W4	Air Injection	1000	UHTC + 3.0% CFL-6 + 0.20% SMS + 0.20% CR-2 slurry @ 1900 kg/m3
103/06-35-078-25W4	Air Injection	1000	UHTC + 3.0% CFL-6 + 0.20% SMS + 0.20% CR-2 slurry @ 1900 kg/m3
104/05-35-078-25W4	Observation	1000	LDP-C-310+0.1% CR-2 + 0.3% CFL-6 + 0.2% SMS + 0.15% CDF-4P
103/05-35-078-25W4	Observation	1000	LDP-C-310+0.1% CR-2 + 0.3% CFL-6 + 0.2% SMS + 0.15% CDF-4P
104/06-35-078-25W4	Observation	1000	LDP-C-310+0.1% CR-2 + 0.3% CFL-6 + 0.2% SMS + 0.15% CDF-4P
104/04-35-078-25W4	Observation	1000	LDP-C-310+0.1% CR-2 + 0.3% CFL-6 + 0.2% SMS + 0.15% CDF-4P
104/03-35-078-25W4	Observation	1000	LDP-C-310+0.1% CR-2 + 0.3% CFL-6 + 0.2% SMS + 0.15% CDF-4P
107/06-35-078-25W4	Observation	1000	LDP-C-310+0.1% CR-2 + 0.3% CFL-6 + 0.2% SMS + 0.15% CDF-4P

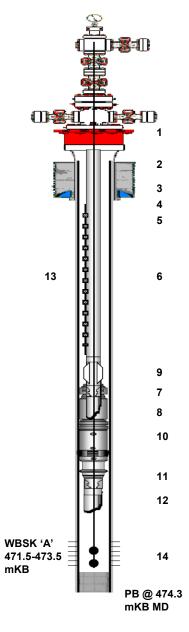

Note:

- 100/03-35-078-25W4 drilled in November 2008 as an evaluation well
 - thermal cement rated for 360°C
 - the Project location was based on core and log data from this well
 - converted to an air injection well for the Project
- Observed temperatures in the 100/03-35-078-25W4 air injection well
 - max temp of 220°C during the 30 day steaming phase (October 2011)
 - temperatures constant 20 25°C since start of air injection (December 2011)
- Peak combustion temperatures were recorded in two observation wells
 - 103/05-35-078-25W4 and 104/04-35-078-25W4 wells
 - highest combustion temperatures observed in the gas zone ~330°C
- There has been no indication of wellbore integrity issues within the Project

Producing HZ Well 105/06-35-078-25W4

7 1

Well:	Husky HZ 105 Pelican 6-35-78-25	KB (m):	584.09	Rig:	Precision Drilling #102	TD (mKB MD):	992.00
Unique ID:	105/06-35-078-25W4/00	GL (m):	579.62	Spud Date:	06/24/2011 @ 04:00 Hrs	TVD (mKB MD):	454.40
Surface Location:	05/04-35-078-25W4	CF (m):	579.62	Rig Release Date:	07/05/2011 @ 23:59 Hrs	PBTD (mKB MD):	981.59
License #	0430310	KB-CF (m):	4.47	Profile:	Horizontal	PB (mKB MD):	


	Casing Details:
Surface Hole:	444.5 mm Hole Drilled From 0.00 – 206.00 mKB
Surface Casing:	16 Jts – 339.7 mm, 81.01 kg/m, J-55, ST&C. Landed @ 205.70 mKB
Surface Casing Cement:	32.50 T – Proteus Core + 2.00% Cacl2
Returns	12.00 m3
Intermediate Hole:	270 mm Hole Drilled From 206.00 – 585.00 mKB
Intermediate Casing:	46 Jts – 219.1 mm, 47.621 kg/m, K-55, ST&C. Landed @ 584.90 mKB
Intermediate Casing Cement:	40.00 T – LDP-C-310 + 0.20% SMS + 0.15% CDF-4P + 0.40% CFL-6 + 0.30% CFL-3 + 0.40% CFL-4
Returns:	0.80 m3
Liner Hole:	200 mm Hole Drilled From 585.00 – 992.00 mKB MD
Liner Casing:	35 Jts – Slotted Liner, 139.7 mm, 25.29 kg/m, L-80, GEOCONN. Landed @ 982.00 mKB MD, Liner hanger top @ 557.60 mKB MD

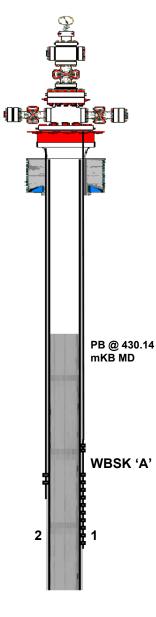
Tubing String Details:

Size: (mm) OD:	88.9	Kg/m:	13.84	Grade:	J-55	Landing De	epth: ((mKB MD): 550.0
No.								No.	
1.				iples Landed @ 970 .0, 670.0, 645.0, 620			0, 845.0,		38.1mm Coil Tubing Cointaining Both Instrumentation Strings - Landed @ 961.00 mKB MD
2.		entation String #2 s Landed @ 969.0		iples Landed @ 969 0 mKB MD	.0, 770.0, 569.0) mKB MD + F	Pressure	8.	R&M Energy - Hi-Temperature Tubing Rotator
3.	1 - Tub	ing Hanger						9.	1 - 114.3 mmx 88.9mm Cross-Over
4.	1 - 60.3	3mm x 52.4mm Cro	oss-Over					10.	56 - 88.9mm. L-80 Tubing With Bevelled Couplings. Landed @ 501.3 mKB MD
5.	57 - 52	.4mm Tubing Jt.						11.	PCP - pump intake landed at 501.30 mKB MD
6.	1 - 52 4	mm Mule Shoe .It							

Injection Well 102/06-35-078-25W4

Well:	Husky 102 Pelican 6-35-78-25	KB (m):	579.46	Rig:	Precision Drilling #164	TD (mKB MD):	529.00
Unique ID:	102/06-35-078-25W4/00	GL (m):	575.32	Spud Date:	3/15/2010 3:30:00 PM	TVD (mKB MD):	492.12
Surface Location:	04/06-35-078-25W4	CF (m):	575.41	Rig Release Date:	3/15/2010 11:59:00 PM	PBTD (mKB MD):	522.20
License #	0418707	KB-CF (m):	4.05	Profile:	Directional	PB (mKB MD):	474.30 (Cement Top)

	Casing Details:
Surface Hole:	349 mm Hole Drilled From 0.00 – 199.00 mKB MD
Surface Casing:	15 Jts - 244.5 mm, 48.068 kg/m, H-40, ST&C. Landed @ 199.00 mKB MD
Surface Casing Cement:	22.00 T – Proteus CO + 2.00% CaCl2 + 1.00% CFR-2
Returns	4.00 m3
Production Hole:	222 mm Hole Drilled From 199.00 – 529.00 mKB MD
Production Casing:	44 Jts + 1 Marker Jt - 177.8 mm, 34.228 kg/m, L-80, QB2. Landed @ 529.00 mKB MD
Production Casing Cement:	Scavenger - 1.00 T - UHTC; Lead - 15.40 T – UHTC + 0.30% CFL-6 + 0.20% CR-2 + 0.20% SMS
Returns:	2.00 m3


Tubing	String	Details:
rubilig	Sunny	Details.

Size: (mı	m) OD: 88.9	Kg/m: 13.84	Grade:	J-55	Landing Depth: (mKB MD):
No.			No.		
1	1 - 179.4 mm × 88.9 mm Tubi	ng Hanger	8	1 - 88.9 mm Bo	ox Up x 101.6 mm Mule Shoe Down
2	1 - 88.9 mm Tubing Jt.		9	1 - 88.9 mm x	101.6 mm x 4.50 m Thermal PermaPack Locating Assembly
3	1 - 88.9 mm x 3.10 m Pup Jt.		10	1 - 177.8 mm T	Fhermal PermaPack Permanent Seal Bore Packer c/w 101.6 mm x 4.50 m Integral Seal Bore
4	1 - 88.9 mm x 1.80 m Pup Jt.		11	1 - 114.3 mm x	69.9 mm SXN Nipple (67 mm No-Go Nipple)
5	1 - 88.9 mm x 1.20 m Pup Jt.		12	1 - 114.3 mm V	Nireline Re-Entry Guide
6	47 - 88.9 mm Tubing Jt.		13	Thermocouple	s @ 472.50, 472.50, 443.00, 415.00, 387.00, 358.00, 330.00, 302.00, 275.00, 247.00 mKB M
7	1 - 88.9 mm x 69.9 mm SX Ni	ople	14	Thermocouple	s @ 473.50, 472.25 mKB MD

Date Set	Make:	Model:	Depth Set (mKB MD):	Pressure Tested:
July 14, 2011	Logan	177.8 mm Thermal PermaPack Permanent Seal Bore Packer	465.00	7 MPa @10 mins
April 17, 2011	Sanjel	1.20 m3 LDP-C-310 (UHTC) + 0.30% CFL-6 + 0.20% SMS + 0.10% CR-2	522.20-482.60	
July 13, 2011	Sanjel	1.30 T - LDP-C-310 (UHTC) + 0.30% CFL-6 + 0.20% SMS + 0.10% CR-2	482.60-474.30	

Observation Well 104/03-35-078-25W4

No.

Well:	Husky 104 Pelican 3-35-78-25	KB (m):	579.60	Rig:	Precision Drilling #163	TD (mKB MD):	487.00
Unique ID:	104/03-35-078-25W4/00	GL (m):	575.40	Spud Date:	03/30/2011 @ 12:45 Hrs	TVD (mKB MD):	464.83
Surface Location:	04/04-35-078-25W4	CF (m):	575.65	Rig Release Date:	04/04/2011 @ 20:00 Hrs	PBTD (mKB MD):	
License #	0419607	KB-CF (m):	3.95	Profile:	Directional	PB (mKB MD):	430.14 (Cement Top)

	Casing Details:				
Surface Hole:	349 mm Hole Drilled From 0.00 – 171.00 mKB MD				
Surface Casing:	13 Jts – 244.5 mm, 48.068 kg/m, H-40, ST&C. Landed @ 171.00 mKB MD				
Surface Casing Cement:	20.00 T – Proteus Core + 2.00% CaCl2 + 1.00% CFR-2 + 0.15% CDF-4P				
Returns	5.00 m3				
Production Hole:	222 mm Hole Drilled From 171.00 – 487.00 mKB MD				
Production Casing:	35 Jts + 3 Marker Jt - 114.3 mm, 14.14 kg/m, J-55, ST&C . Landed @ 484.20 mKB MD				
Production Casing Cement:	29.40 T – LDP-C-310 + 0.10% CR-2 + 0.20% SMS + 0.30% CFL-6 + 0.15% CDF-4P				
Returns:	5.00 m3				
Liner Hole:	N/A				
Liner Casing:	N/A				

Tubing String Details:

Instrumentation String #1 (Outside Of Casing): Thermocouples @ 476.27, 475.14, 474.01, 472.01, 471.75, 470.62, 469.49, 468.36, 467.22, 464.96, 452.52, 451.38 mKB MD

2 Instrumentation String #2 (Outside Of Casing): Thermocouples @ 470.62, 464.53 mKB MD & Pressure Sensors @ 470.62, 465.53 mKB MD

4. Artificial Lift

- Horizontal production well 105/06-35-078-25W4
 - Currently equipped with high temperature metal to metal 80MET1000 PCP
 - Initially equipped with a high temperature 12-ML-17 PCP (rated for a max of 175 °C)
 - Horizontal well 105/06-35 on prod November 2012
- Horizontal production well 109/06-35-078-25W4
 - Currently equipped with high temperature metal to metal 80MET1000 PCP
 - Initially equipped with a high temperature 12-ML-44 PCP
 - Changed to a 16-ML-44 PCP (rated for a max of 175 °C)
 - On production September 2013
- Horizontal production well 110/06-35-078-25W4
 - Currently equipped with high temperature metal to metal 80MET1000 PCP
 - Initially equipped with a high temperature 16-ML-44 PCP (rated for a max of 175 °C)
 - On production October 2013
- Horizontal production well 108/06-35-078-25W4
 - Equipped with high temperature 12-ML-17 PCP
 - Well started back up October 2014
 - On production October 2013 (shut-in December 2, 2013)

5. Instrumentation in Wells

Metering and Monitoring

- Air injection will be measured on an individual well basis; four horizontal wells are equipped with production and sales tanks
- Four Horizontal Oil Production Wells
 - Thermocouples every 25m along the horizontal section
 - Pressure sensors at the heel, middle and toe of the horizontal section
 - Wells equipped with gas chromatographs to monitor produced gas composition
 - Periodic oil & gas samples for analysis
 - Issues with malfunctioning thermocouples & pressure sensors
- Three Air Injection Wells
 - Thermocouples placed at the mid-point of perforations (gas zone)
 - Two wells equipped with temperature sensors to indicate potential flow behind pipe
- Six Observation Wells
 - 12 thermocouples installed per well (2 above the gas zone, 3 gas zone & 7 bitumen zone)
 - One well equipped with pressure sensors
- Offsetting Gas Wells
 - Four area gas wells equipped gas chromatographs for monitoring of produced gas composition
 - Periodic static gradients to monitor reservoir pressure

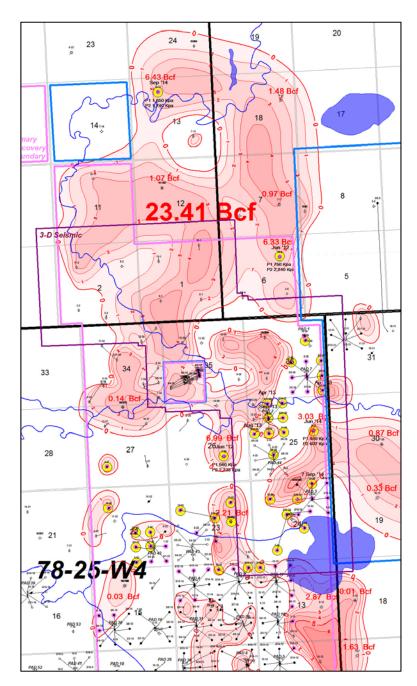
6. 4D Seismic

- Lateral distribution of heat
 - Too small to be resolved on 3D or 4D seismic surveys
- 4D seismic data
 - No plans to acquire

7. Scheme Performance

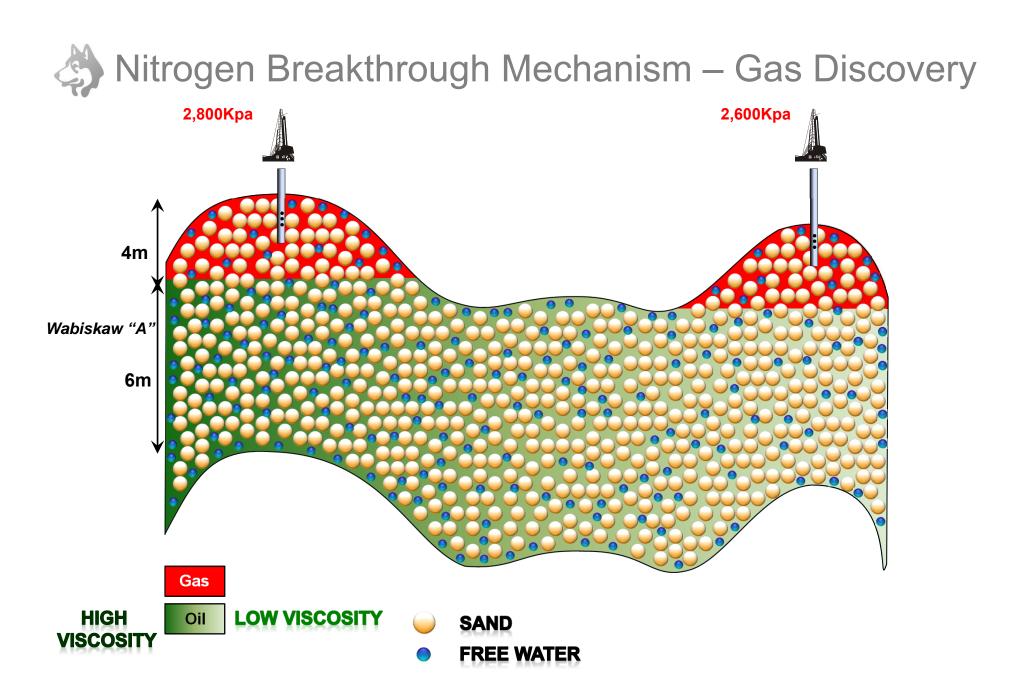
- First steam injection on September 28, 2011 (temporary 8,311 m³ CWE)
- First air injection on December 8, 2011
- Shut-in air injection on September 18, 2014
- Suspension of Project operations on October 31, 2015
- The purpose of the initial steam injection was to raise the formation temperature in each of the three injection wells to 180 – 200 °C to allow for ignition when switching over to air injection.

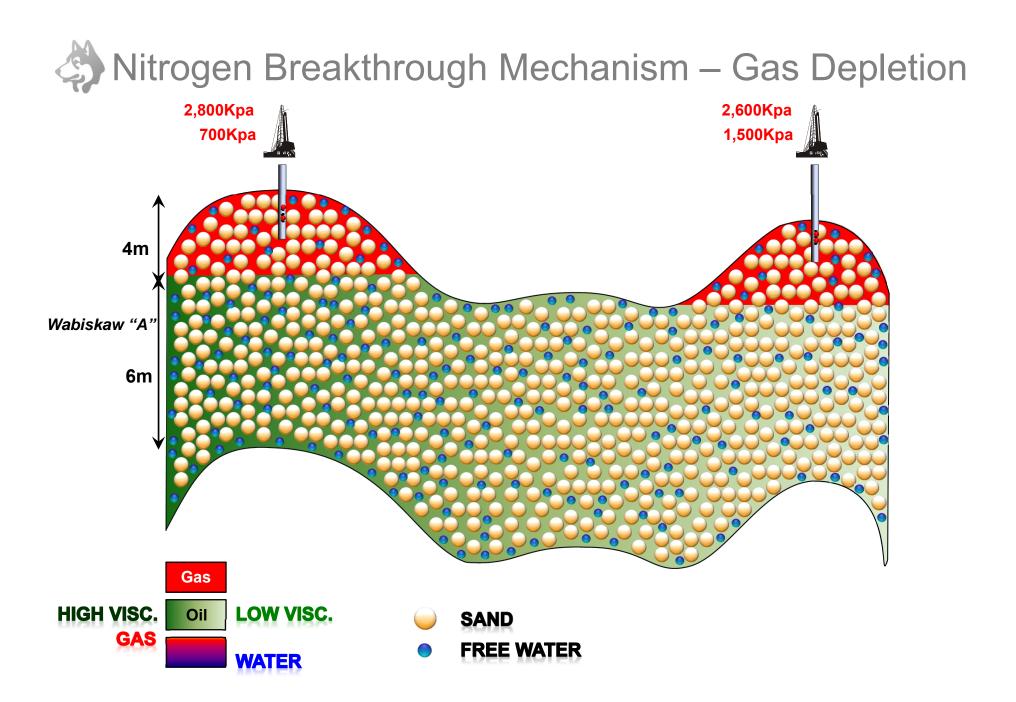
Criteria for Hoizontal Producers Start-up:


• Nine of the 16 thermocouples located along the horizontal section of the wellbore would be heated to a temperature of at least 56 °C, which would result in a bitumen viscosity of 2,200 cp or less and a flow rate of 25 m³/d or higher.

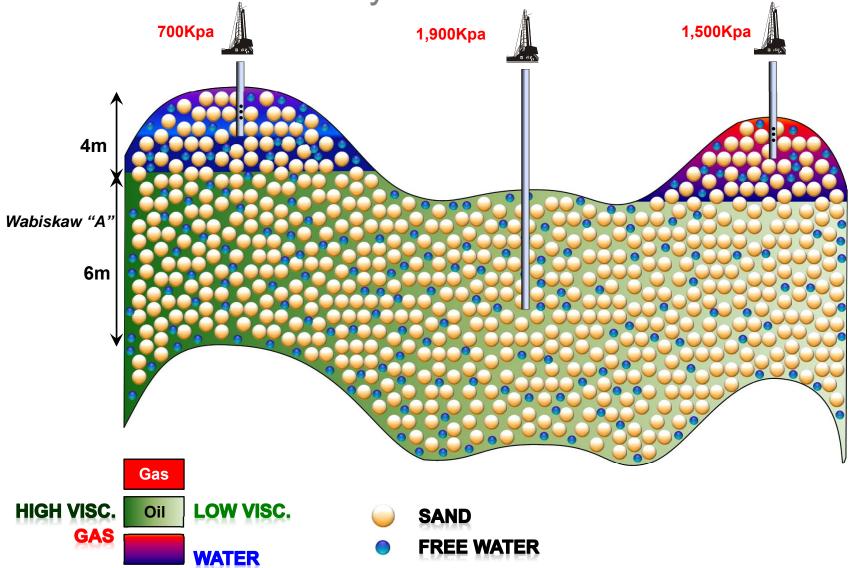
Injection & Production History

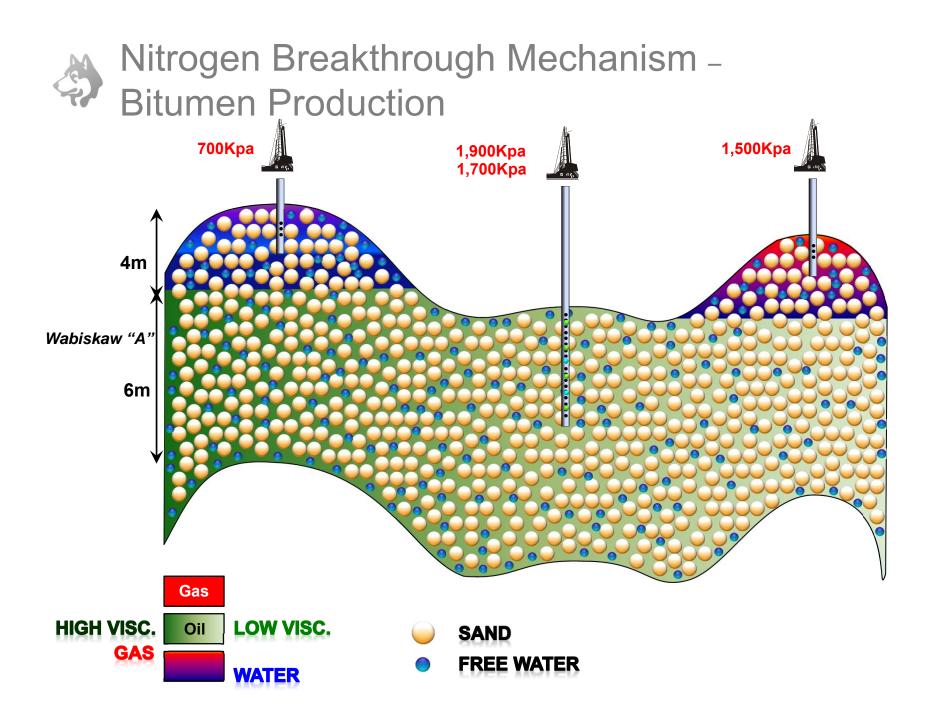
- Start-up of air injection on December 8, 2011
 - Increases in injection rate:
 - 15 e³m³/day on December 12, 2011
 - 20 e³m³/day on December 28, 2011
 - 25 e³m³/day on January 30, 2012
 - 40 e³m³/day on February 17, 2012
 - 45 e³m³/day on March 16, 2012
 - 55 e³m³/day on April 24, 2012
 - 65 e³m³/day on July 16, 2012 (two trains)
 - 90 e³m³/day on October 17, 2012 (third train)
 - shut-in air injection on September 18, 2014 (after 2 years & 10 months of injection)
- Shut-in of air injection was due to increasing concentrations of nitrogen observed in several of Husky's surrounding primary wells in the area and the potential risk to more production
- Horizontal Well 105/06-35-078-25W4 on initial production for four days in August 2012
 - Shut-in due to the detection of H_2S , production re-start was on November 1, 2012
- Horizontal wells 109/06-35-078-25W4, 110/06-35-078-25W4 & 108/06-35-078-25W4 were placed on production in September and October 2013
 - Well 108/06-35-078-25W4 was shut-in on December 2, 2013 to allow bitumen zone to be further heated; was placed back on production October 8, 2014

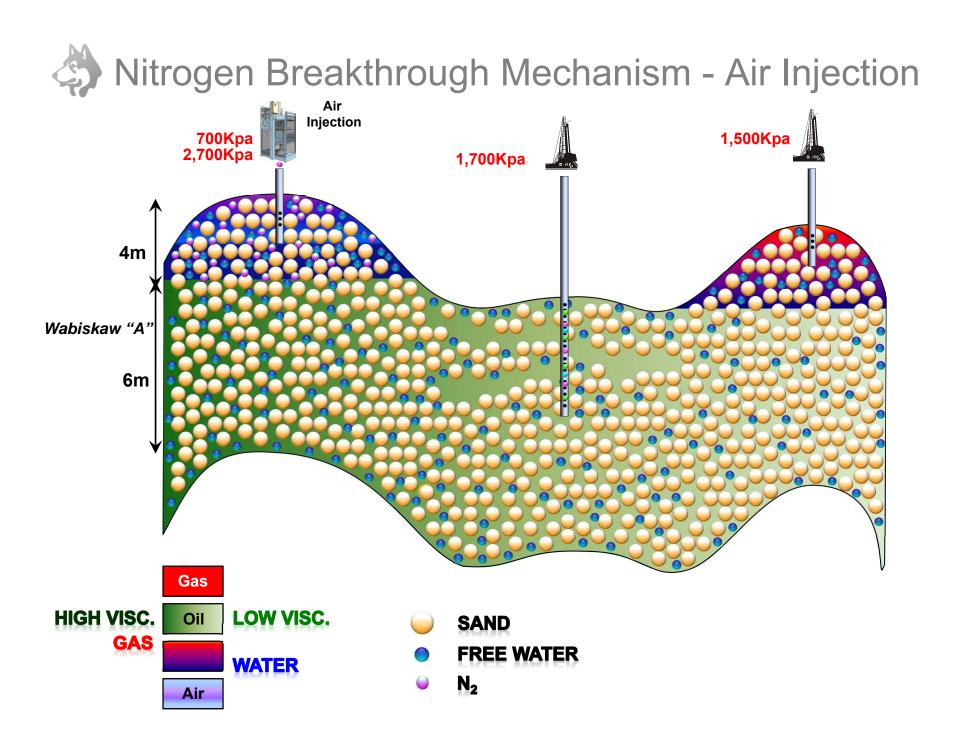




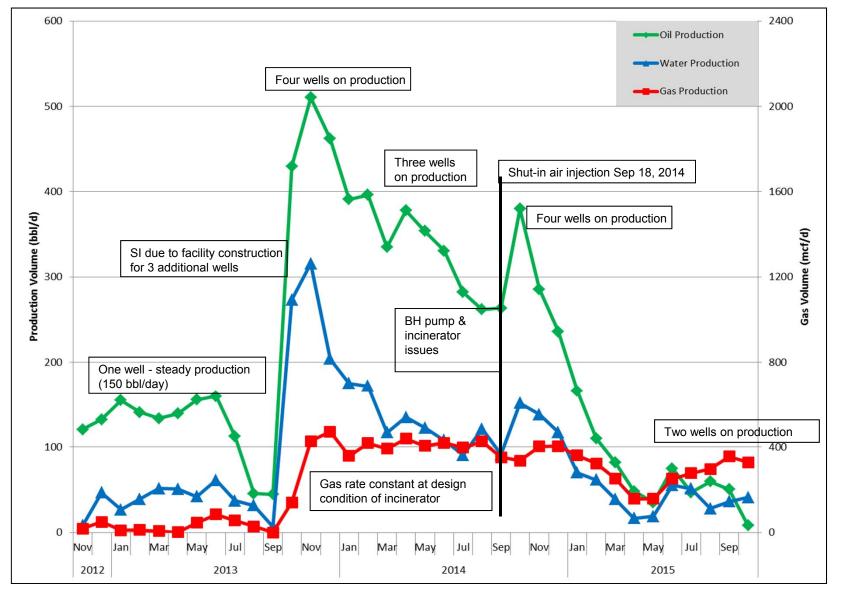
 \bigcirc

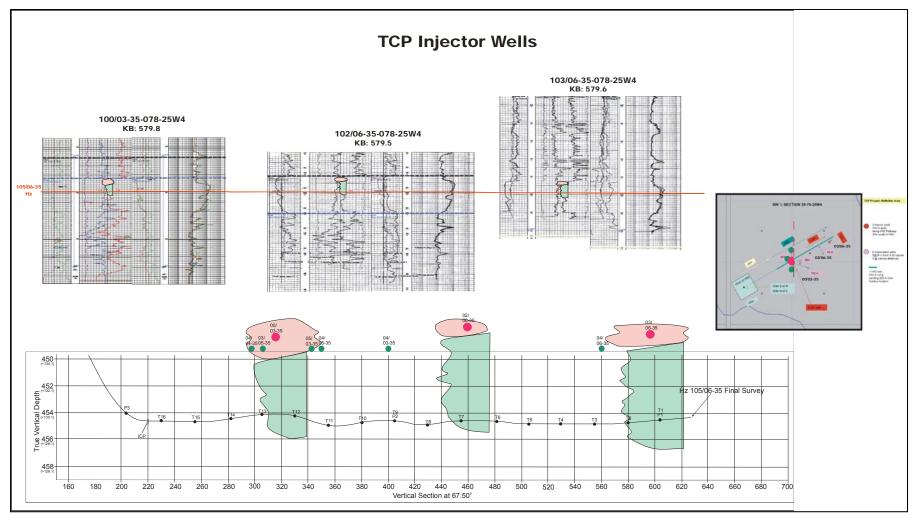

Wells monitored for Nitrogen

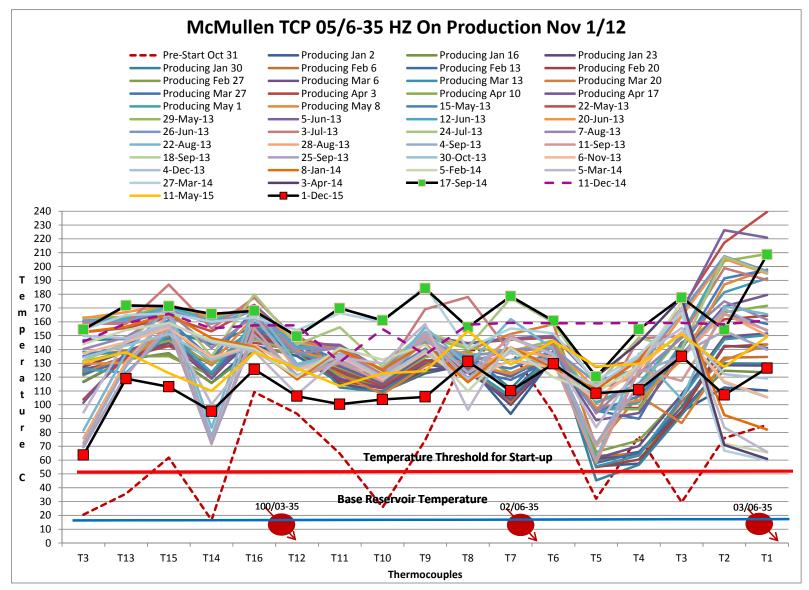

Wells with Nitrogen detected



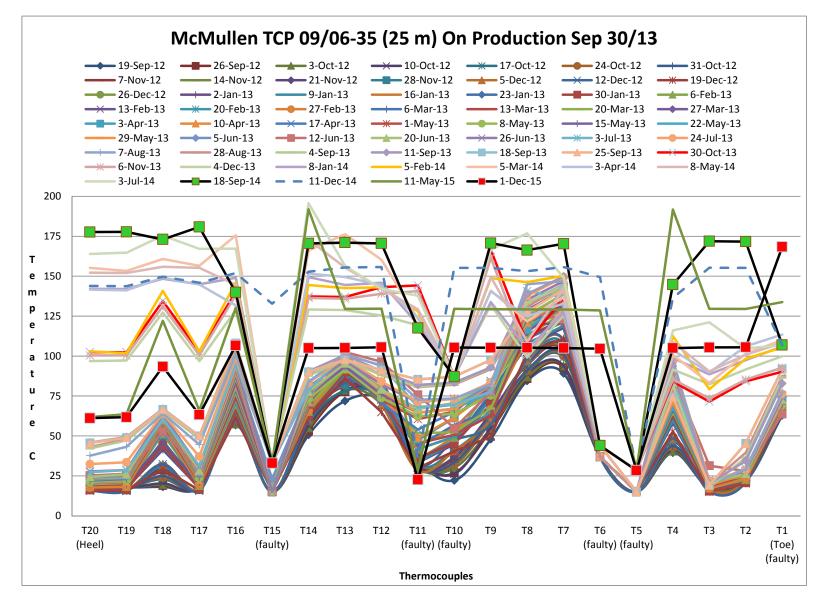
Nitrogen Breakthrough Mechanism – Bitumen Discovery

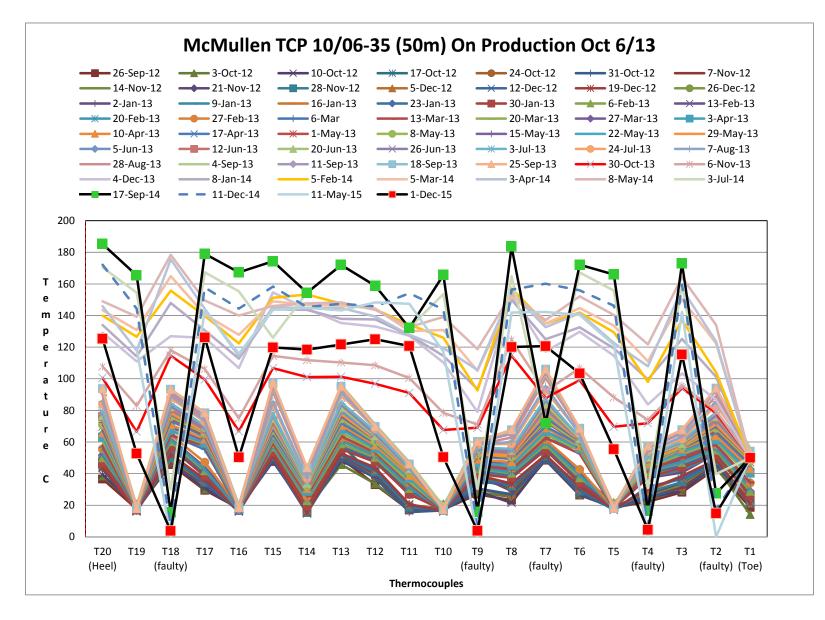


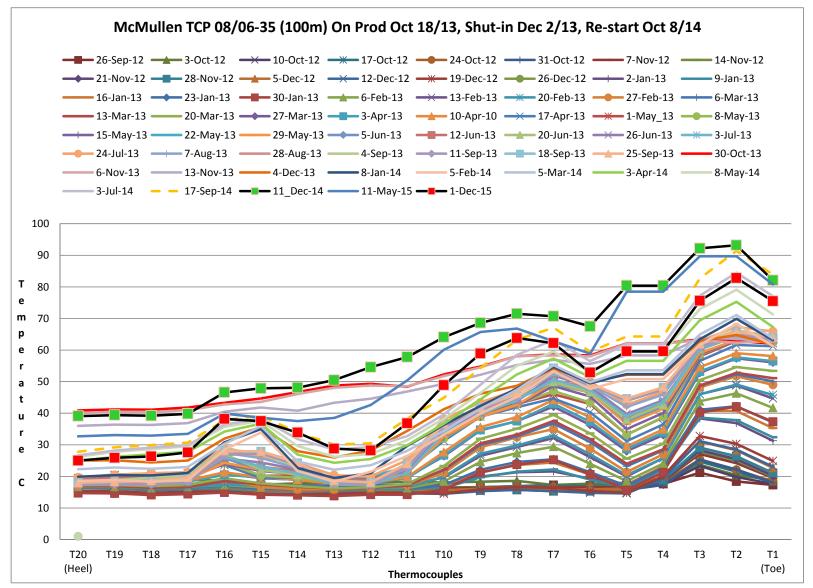

• Cumulative Oil 228.3 mstb (36.3 e³m³) at suspension of operations October 31, 2015

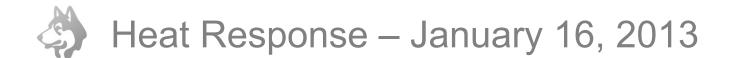

52

Horizontal Well 105/06-35-78-25W4 Thermocouple Placement

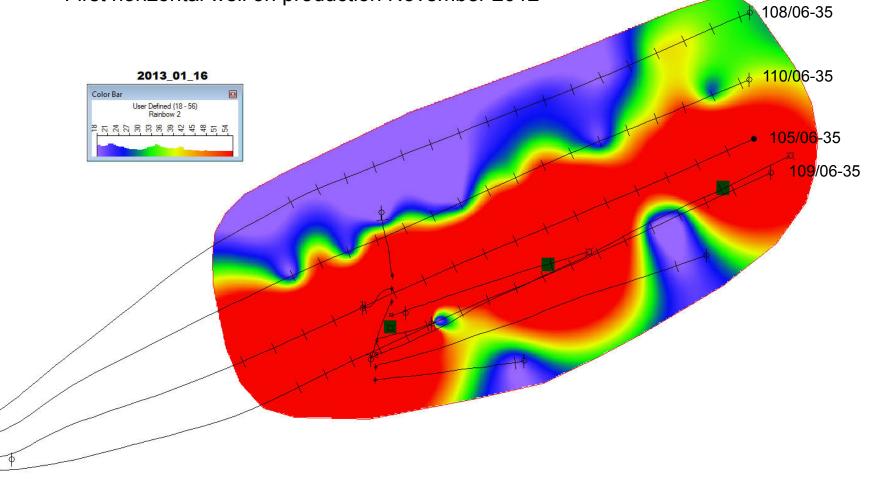


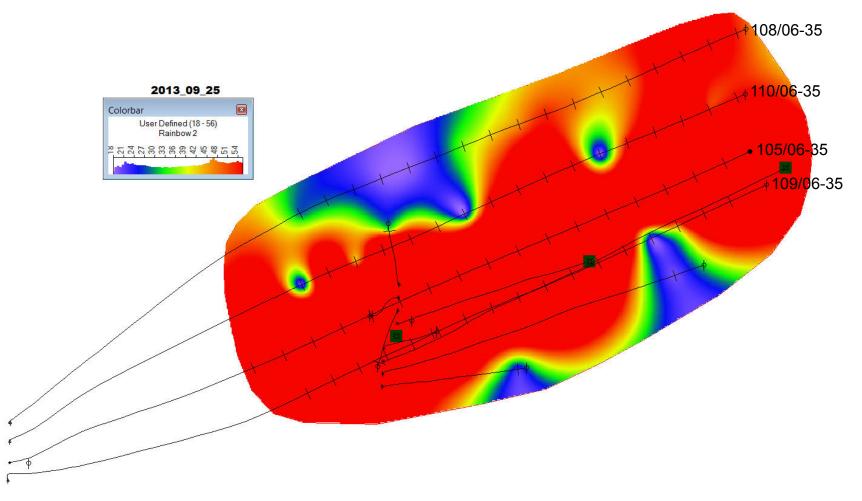

Horizontal Wellbore Temperature History


55

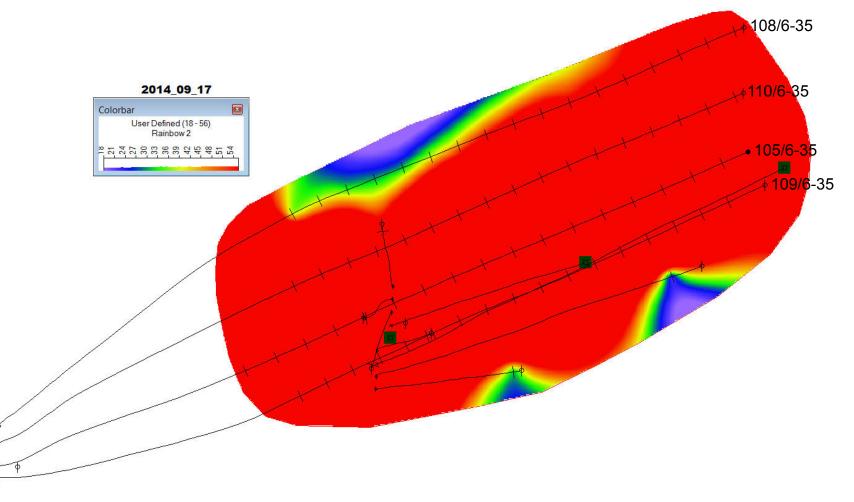


Horizontal Wellbore Temperature History

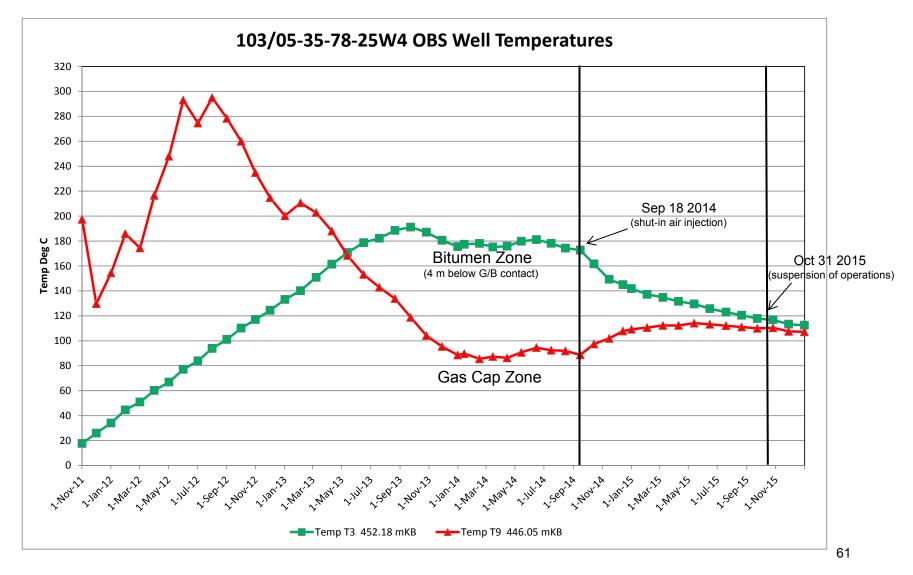




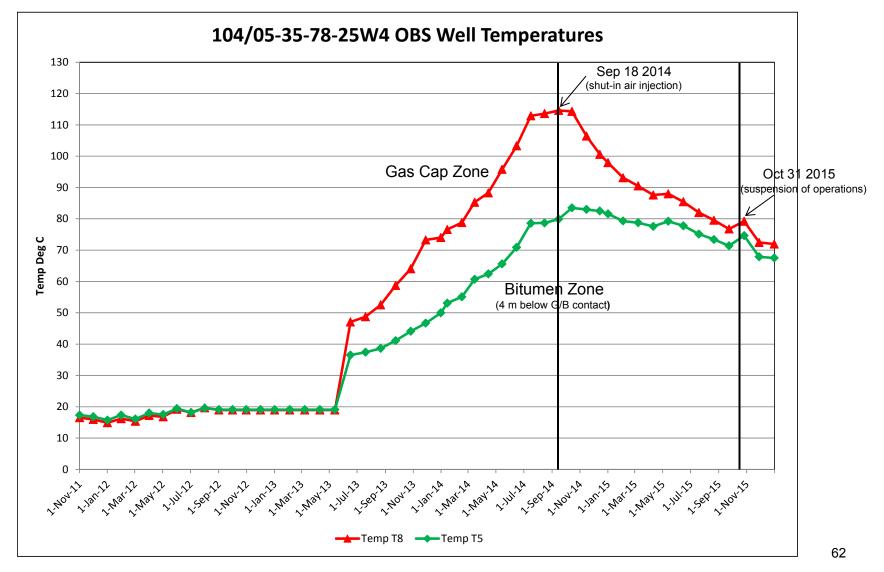
- 13 months after start of air injection
- First horizontal well on production November 2012



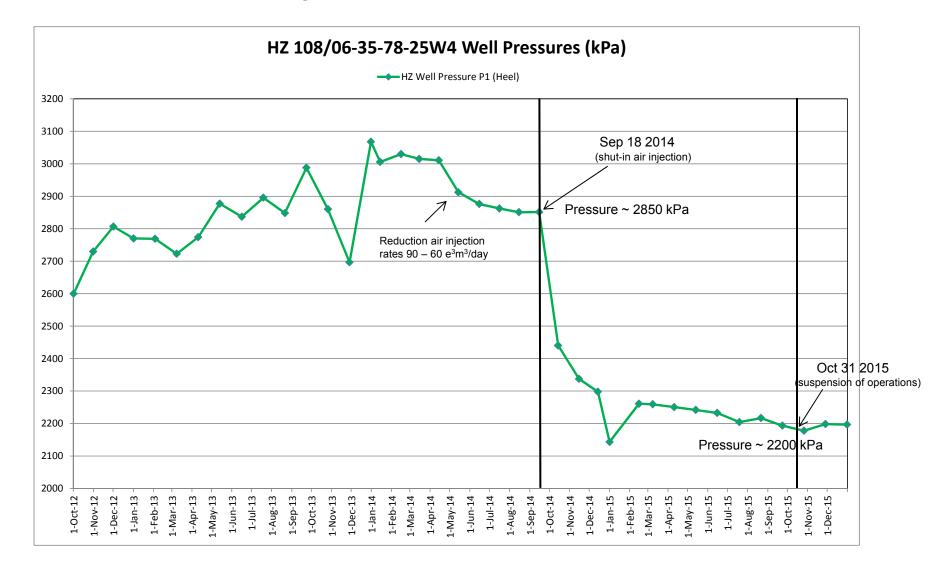
- 21 months after start of air injection
- Prior to placing remaining 3 horizontal wells on production



- 34 months after start of air injection
- Prior to shut-in of air injection on September 18, 2014

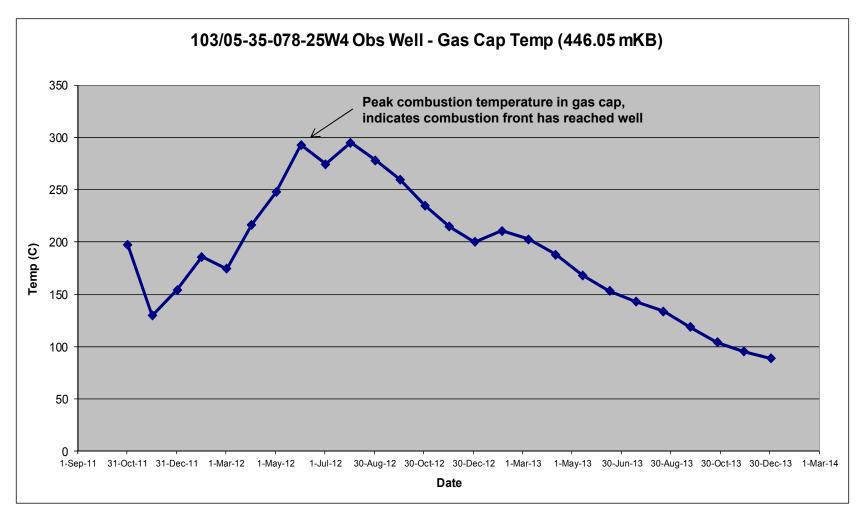


• 25 m from well 100/03-35-078-25W4 (air injector)

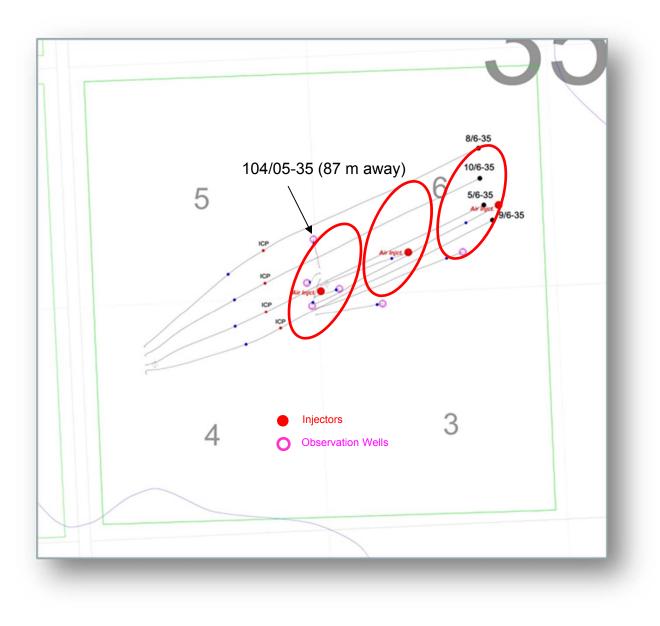


• 87 m north of well 100/03-35-078-25W4 (air injector), ahead of the combustion front

Horizontal Well 108/06-35-078-25W4M Pressure History

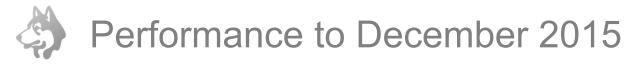

• 4m thick gas cap

Year	Calculated Gas In Place (m³)	Injection Air (m³/d)	Cum Injection E ³ m ³	Front velocity (m/d)	Front velocity (ft/d)	Calculated Radius (m)	Comments
2012	29,851	52,900	20,896	0.134	0.440	53	actual
2013	76,727	89,900	53,709	0.080	0.263	82	actual
2014	103,759	72,500	72,632	0.048	0.160	96	actual
				\bigcirc			
2015	145,474	80,000	101,832	0.048	0.159	114	estimated
2016	187,188	80,000	131,032	0.041	0.137*	129	estimated


*Technical literature recommends a minimum burning velocity of 0.125 ft/d in order to have satisfactory combustion (Nelson and McNeil, "How to engineer an in-situ combustion project", Oil and Gas Journal June 5, 1961)

OBS Well 103/05-35-078-25W4 Gas Cap Temperatures

- 25 m from well 100/03-35-078-25W4 (air injector)
- Front Velocity 25 m in 180 days 0.138 m/d


- Average Reservoir Parameters:
 - Net Oil Pay = 6 m, Oil FVF = 1.00 m³/m³
 - Porosity = 31%, So = 70%
 - Recovery Factor = 50%
- Entire approval area 64 ha (SW/4 section 35-078-25W4)
 - OBIP = 833 e³m³
 - ROIP = 416.5 e³m³
- Planned operating portion of the project 13 ha (prior to shut-in of air injection)
 - OBIP = $169 e^{3}m^{3}$
 - ROIP = $84.5 e^{3}m^{3}$
- Actual operating portion of the project 6 ha (after shut-in of air injection)
 - OBIP = 78 e³m³
 - Cum oil produced = $36.3 e^{3}m^{3}$ (suspension of operations October 31, 2015)
 - Recovery Factor to date = 46.5%

- McMullen TCP Pilot estimated > 50%
 - CMG[™] numerical simulation was completed in 2015
 - Simulation has confirmed > 50% (RF at suspension of operations is 46.5%)
- Other In-Situ Fields:
 - Suplacu de Barcau Field, Romania 56%, in operation since 1965
 - Balol/Santhal Fields India 39/45%, in operation since 1990
 - Bellevue, Louisiana 60%, in operation since 1970
- Steam Assisted Gravity Drainage (SAGD):
 - 45 to 65%
- Cyclic Steam Stimulation (CSS):
 - 25 to 45%

• No steam injection in 2012, 2013 and 2014

- Reservoir pressure
 - Original 1,750 kPa increased to 3,000 kPa due to air injection; current ~ 2,200 kPa (December 2015)
- H₂S concentration
 - Between 400 2,200 ppm (average ~ 1,000 ppm)
- Oil production rate
 - Peak rate 90 m³/day (560 bopd November 2013 4 wells)
 - Current 0 m³/day (suspension of operations October 31, 2015)
- Cumulative oil production
 - 36.3 e³m³ (228.3 mbbl), recovery factor 46.5% at suspension of operations
- Total air injected (three (3) injectors)
 - $218 e^{6}m^{3}$ (7.7 Bcf as of shut-in on September 18, 2014)

Summary of Key Learnings

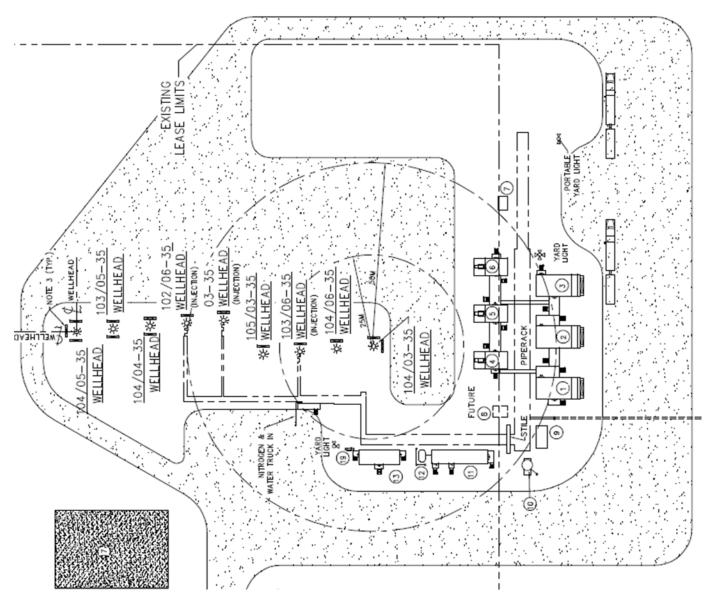
- December 2015 49 months after start of air injection
- Safe and continuous operation of the air injection facilities
- Successful heating of the underlying bitumen through thermal conduction
 - Oil rates as predicted (25 m³/d, 25-30% BS&W)
 - Recovered 36.3 e³m³ (228.3 mbbl) at suspension of operations October 31, 2015
- Successful ignition and continuous combustion
 - Based on produced gas analysis and observed temperatures
- Combustion front radius
 - Travelled a distance of ~96 m after 34 months (at time of shut-in of air injection); the front radius was estimated to travel 130 m after five years
- Effect of Nitrogen on offsetting primary production
 - Future design process requires a waste gas management program for the handling of produced gases

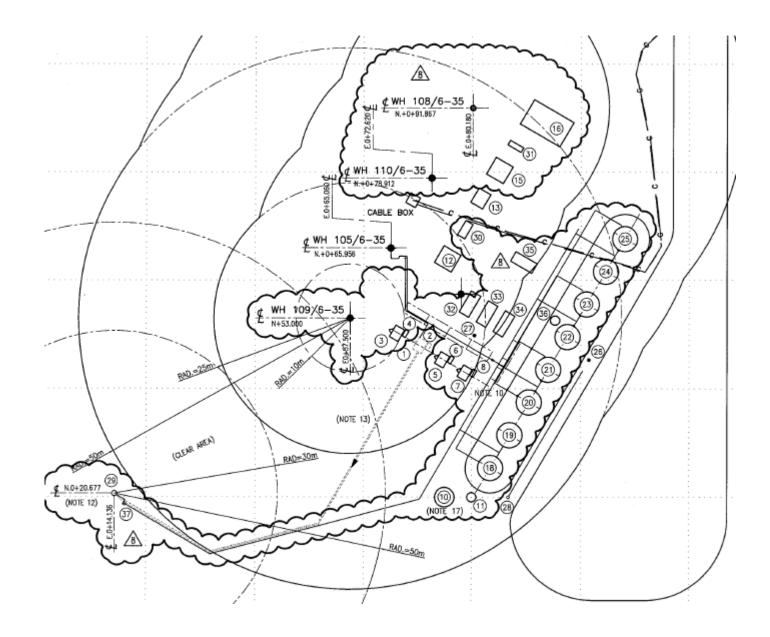
8. Future Plans

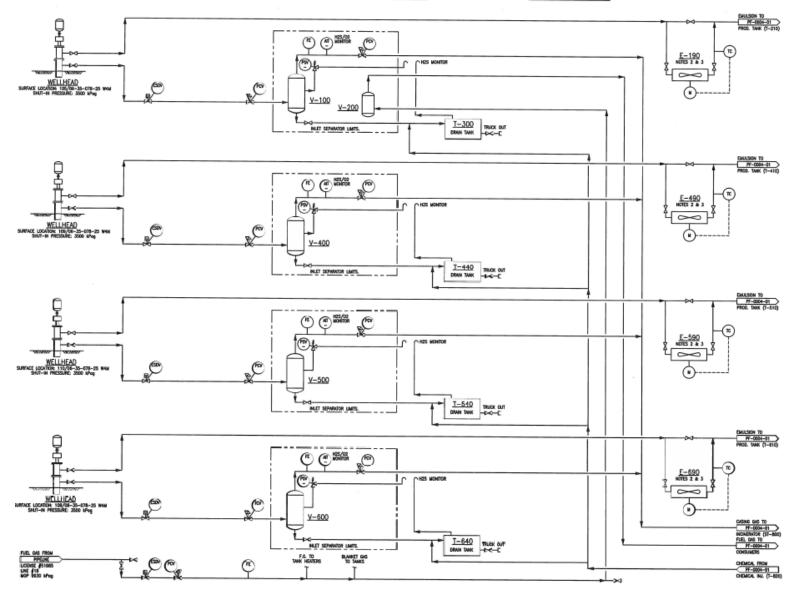
- Monitoring activities to discontinue
 - AER granted verbal approval to Husky on December 17, 2015 to discontinue monitoring of reservoir temperature and pressure by year-end 2015; as a result down-hole monitoring of pressure and temperature and power generation at the injection & production pad sites ceased as of January 6, 2016
- AER Directive 017 annual MARP report
 - 2015 report was completed and finalized on February 2, 2016 and will be kept on file pending AER request for information
- Continue Environmental monitoring
 - 2015 groundwater, air, soil & industrial wastewater & runoff reports to be submitted March 31, 2016
 - Complete final groundwater monitoring program in spring 2016 final report submitted in fall 2016
- Decommissioning & Reclamation Plan to be submitted to AER April 30, 2016

3.1.2. Surface Issues - Table of Contents

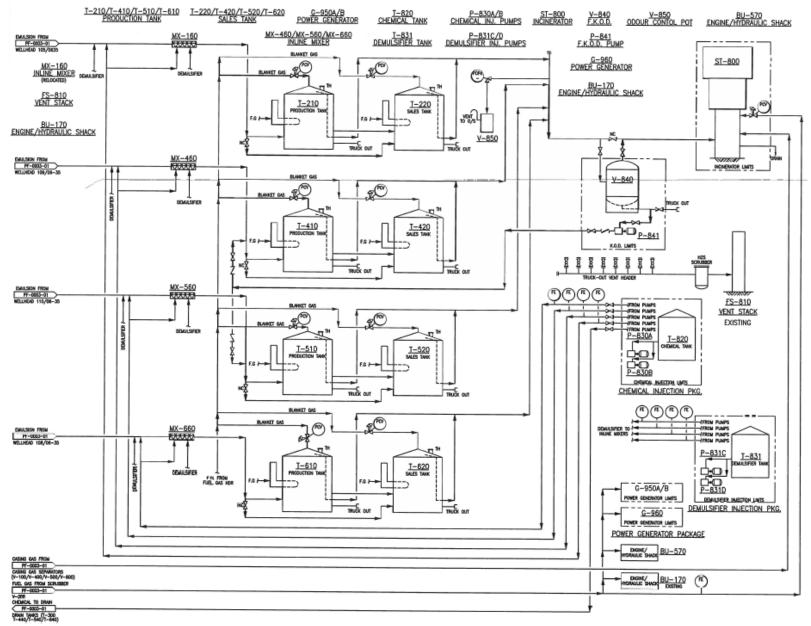
- 1. Facilities slide 75
- 2. Facilities Performance slide 79
- 3. Measurement and Reporting slide 85
- 4. Water Production and Injection slide 88
- 5. Sulphur Production slide 90
- 6. Environmental Issues slide 93
- 7. Compliance Statement slide 95
- 8. Non-Compliance Events slide 97
- 9. Future Plans slide 99


1. Facilities


• As of October 11, 2013



2. Facilities Performance


V-100 V-200 I-300 V-400/V-500/V-600 I-440/T-540/T-640 E-190/E-490/E-590/E-690 CASING GAS SEPARATOR FUEL GAS SCRUBBER DRAIN TANK CASING GAS SEPARATOR DRAIN TANK EMULSION AFRIAL COOLER

80

Production Process Flow (2/2)

- Bitumen treatment
 - Bitumen sales started in November 2012
 - H₂S scavenger injected to neutralize emulsion to meet sales specifications
 - Majority of the bitumen was trucked to Husky Blackfoot terminal for 2015
- Water treatment
 - Water trucking started in November 2012
 - Primary disposal at Husky's 16-11-078-25W4 (No. 9056B) disposal facility after being treated with H₂S scavenger (on site tanks)
- Steam generation
 - There was no steam generation in 2015

- Power consumed in 2015 generated onsite by a 151 kW unit at the injection pad and a 151 kW unit at the production pad
- Fuel gas usage in 2015:

Month	Monthly Volume (e ³ m ³)								
(2015)	04-35-078-25W4 Production Pad	03-35-078-25W4 Injection Pad	Total						
January	107.8	1.46	109.2						
February	94.7	0.0	94.7						
March	99.2	0.0	99.2						
April	89.5	0.59	90.1						
Мау	84.9	0.0	84.9						
June	73.6	0.0	73.6						
July	83.6	0.16	83.8						
August	86.6	0.0	86.6						
September	87.2	9.96	97.1						
October	82.8	37.54	120.3						
November	0.2	15.25	15.5						
December	0.0	16.73	16.7						
Grand Total	890.1	81.69	971.8						

- Latest facility design for the additional production wells
 - Incorporates the incineration of all tank vapors and casing gas produced
- Green house gas emissions:

20'	15 Green House	AER License	Exceed AER License		
CO ₂ (tonnes/year)	CH ₄ (tonnes/year)	N ₂ O (tonnes/year)	CO ₂ E (tonnes/year)	CO ₂ (tonnes/year)	CO ₂ (Yes/No)
2,607.92	28.05	.04	3,319.86	51,319.00	No

2015 NOx and 0	AER License	Exceed AER License	
NO _X (tonnes/year)	CO (tonnes/year)	NO _X (tonnes/year)	NO _X (Yes/No)
44.33	23.13	182.82	No

3. Measurement and Reporting

Estimating Well Production

2015 Well production

	105/06-35-078-25W4			109/06-35-078-25W4			110/06-35-078-25W4			108/06-35-078-25W4		
Month (2015)	Oil (m ³)	Water (m ³)	Gas (e ³ m ³)	Oil (m ³)	Water (m ³)	Gas (e ³ m ³)	Oil (m ³)	Water (m ³)	Gas (e ³ m ³)	Oil (m³)	Water (m ³)	Gas (e³m³)
January	77.47	40.31	45.72	248.19	112.51	102.28	401.82	96.85	143.43	91.73	94.79	24.04
February	40.63	17.77	30.8	120.86	107.29	86.23	272.4	83.56	117.5	56.63	64.77	20.02
March	32.8	14.78	78.85	27.79	31.06	21.28	298.82	85.29	108.4	45.78	61.8	11.71
April	0	0	1.32	0	0.6	0.06	160.53	45.67	127.75	68.34	32.91	3.79
Мау	3.75	-3.34	1.77	3.2	-10.2	0.01	130.49	58.92	133.01	35.77	47.09	3.24
June	0	0	6.93	182.99	93.33	77.48	179.56	93.36	124.79	-5.72	77.84	3.52
July	2.2	5.28	6.67	181.45	116.25	106.67	70.43	34.75	129.12	-23.75	94.65	0
August	16.86	29.2	28.25	84.92	67.27	89.4	182.05	53.03	141.52	9	-12	0.24
September	0	0	0.02	87.36	109.88	149.83	153.32	62.49	144.3	0	0	6.24
October	-43.36	33.85	0	23.91	160.01	146.99	169.06	30.71	140.41	-2.28	0.12	0
November	-1.4	8.44	0	-73.42	73.06	0	-73.25	58.25	0	0.5	9.5	0
December	0	0	0	0	0	0	0	0	0	0	0	0
Total	128.95	146.29	200.33	887.25	861.06	780.23	1945.23	702.88	1310.23	276	471.47	72.8

Note: Negative production values are a result of tank cleaning and balancing tank inventory

- Each well treated as a single well battery: •
 - liquids: sales = production •
 - gas: individual orifice meter used to measure gas production ٠
- Proration factors N/A ٠
- Optimization of test durations N/A ٠
- New measurement technology No •

- Injection volumes
 - No steam was injected in 2015
 - Air injection was shut-in September 18, 2014
 - No air was injected in 2015
- Air Injection Volumes at well 100/03-35-078-25W4 Injection Pad Per Well

Month (2015)	Volume (e³m³)	Daily Rate/Well (e ³ m ³ /d)
January	0	0
February	0	0
March	0	0
April	0	0
Мау	0	0
June	0	0
July	0	0
August	0	0
September	0	0
October	0	0
November	0	0
December	0	0

4. Water Production and Injection

• Produced water volumes:

Well	2015 Total Water (m³)
105/06-35-078-25W4	146.3
109/06-35-078-25W4	861.1
110/06-35-078-25W4	702.9
108/06-35-078-25W4	471.5

- No produced water recycle volumes or percent
- Disposal wells:
 - 16-11-078-25W4 and 10-23-078-25W4
 - Approval No. 9056B

5. Sulphur Production

- There is no sulphur recovery
 - all produced gas is incinerated at well 04-35-078-25W4

Summ	Summary of 2015 Quarterly SO ₂ Emissions										
Month	Monthly Sulphur (tonnes)	Sulphur SO ₂ Quarter		Quarterly SO ₂ (tonnes)							
January	0.059	0.118									
February	0.049	0.098	1	0.288							
March	0.036	0.072									
April	0.036	0.072		0.094							
May	0.000	0.000	2								
June	0.011	0.022									
July	0.014	0.028									
August	0.012	0.024	3	0.092							
September	0.020	0.040									
October	0.020	0.040									
November	0.000	0.000	4	0.040							
December	0.000	0.000									

- Sulphur balance
 - SO₂ emissions based on 100% conversion of H₂S to SO₂
- Sulphur emissions
 - below 1 tonne/day; no sulphur recovery methods required

- Facility
 - Approved for 0.41 tonnes of SO₂ per day

	Jan 2015	Feb 2015	Mar 2015	Apr 2015	May 2015	Jun 2015	Jul 2015	Aug 2015	Sep 2015	Oct 2015	Nov* 2015	Dec* 2015
Daily Peak SO ₂ (t/d)	0.004	0.004	0.002	0.002	0.000	0.002	0.002	0.002	0.002	0.002	0.000	0.000
AER Approved SO ₂ (t/d)	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41
Exceeds Approval limit (Yes/No)	No	No										

*Note: No produced gas for the month of November and December, facility shut-in.

• EPEA Approval - no requirement to monitor ambient air quality

6. Environmental Issues

- Annual Monitoring and Reporting due March 31, 2016
 - Annual air emission and summary and evaluation report (final annual air summary report)
 - Annual Industrial wastewater and runoff report
 - Groundwater monitoring program
 - Shallow groundwater no indication of adverse impacts
 - Quaternary channel thermal maximum temperature increase ~3.5°C (from baseline)
 - Temperatures show a declining trend post air injection suspension
 - Dissolved arsenic concentrations consistent with baseline values
 - Complete final groundwater monitoring program in spring 2016 submit report in the fall
 - Propose to abandon groundwater monitoring wells following the confirmation of no impacts during final site reclamation
- Other Monitoring and Reporting
 - Soil monitoring (2014 and 2018)
 - Soil management report submitted November 2015
 - Soil management program hand auger assessment proposed for 2016
 - Delineate salinity in the top 15 cm of soil near the tank farm load outs in southeast corner of well 04-35-078-25W4 production site
- Participation in Alberta Biodiversity Monitoring Institute (ABMI)

7. Compliance Statement

• To the best of Husky's knowledge, the Project is currently compliant with all regulatory approval conditions and associated requirements

8. Non-Compliance Events

• No non-compliance events for the reporting period

8. Future Plans

- Future Pilot expansion application activities
 - No expansion activities/commercial development are planned as the Project is currently not economic