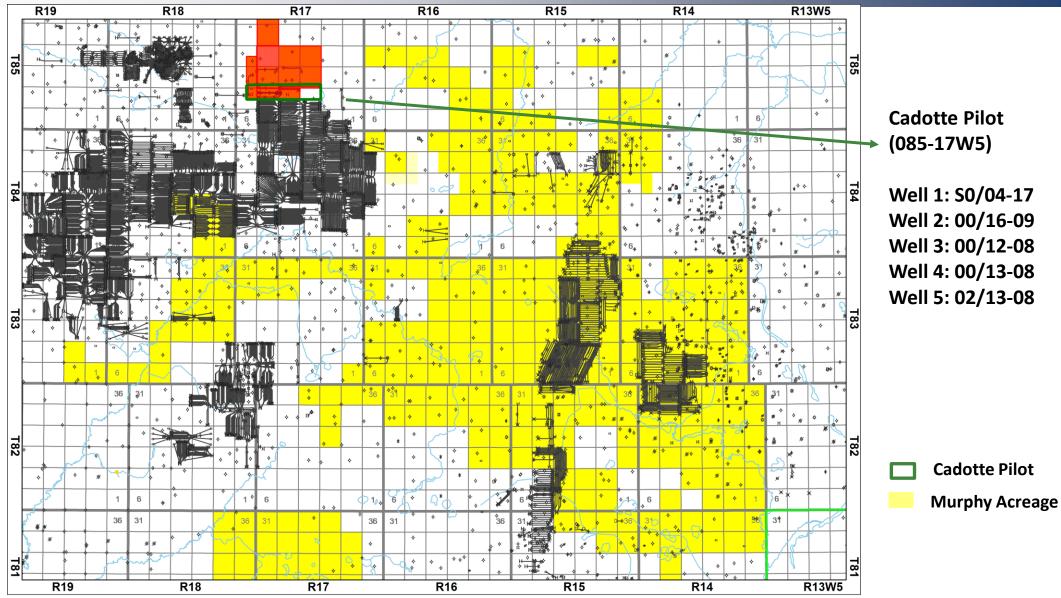


### **Annual D054 Performance Presentation**

Updated Presentation, July 18, 2016



### Agenda


- Subsurface
- Surface
- Future Plans
- Conclusions

### Subsurface

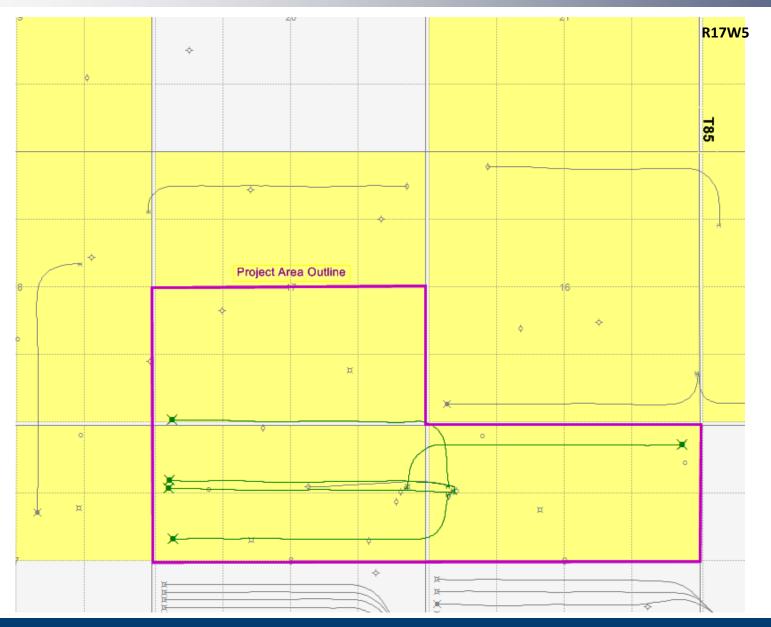
- Background
- Geology
- Wells
- Performance

### Subsurface

- Background
- Geology
- Wells
- Performance



Datum: NAD27 Projection: Stereographic DLS Version AB: ATS 2.6, BC: PRB 2.0, SK: STS 2.5, MB: MLI07


**MURPHY OIL CORPORATION** 

# **Cadotte CSS – History**

- Intent test the viability of HCSS in Cadotte with 3 Upper Bluesky wells and 2 Lower Bluesky wells
- First steam May 2013
- 3 existing wellbores used presented challenges
  - Cumulative oil production of 12,758 m<sup>3</sup> before first steam
  - Well placement not ideal geology & reserves
  - Existing wellbores not ideal for thermal injection/production
    - 04-17 suspect mechanical damage or obstructions hindering steam conformance & build section not ideal for placement of reciprocating pump – severe doglegs which gave us production challenges
    - Wells drilled in lower perm (Upper Bluesky) which is not the ideal placement for thermal exploitation in this reservoir
- 2 new wells drilled into Lower Bluesky
  - Good permeability, no voidage prior to first steam, wells completed with thermal liners and casing, and build sections complete with tangents for rod pump configuration
- To-date 5 wells tested with two new wells in Lower Bluesky showing the most promise with good injectivity and high IP rates
- Steam generator 7,320 kWh
  - 250m<sup>3</sup>/day

| Application Number |            |                                          | Approval N | umber        |               |             |  |
|--------------------|------------|------------------------------------------|------------|--------------|---------------|-------------|--|
| AER                | AESRD      | Project Summary                          | AER        | AESRD        | Approval Date | Expiry Date |  |
| 1685253            |            | 3 well CSS pilot                         | 11778      | -            | 16-Feb-12     | N/A         |  |
| 1746800            |            | increase steam slug size                 | 11778A     | -            | 14-Dec-12     | N/A         |  |
|                    | 001-322432 | 3 well CSS pilot                         | -          | 322432-00-00 | 5-Sep-13      | 31-Aug-23   |  |
| 1769634            |            | increase steam inj. Pressure<br>12.4 Mpa | 11778B     | -            | 29-Nov-13     | N/A         |  |
| 1781023            |            | Added 2 wells                            | 11778C     | -            | 10-Jun-14     | N/A         |  |

## Map of Scheme

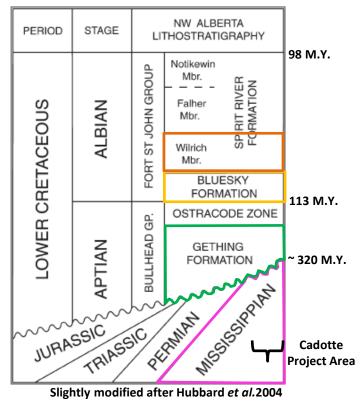


# **Horizontal CSS Design**

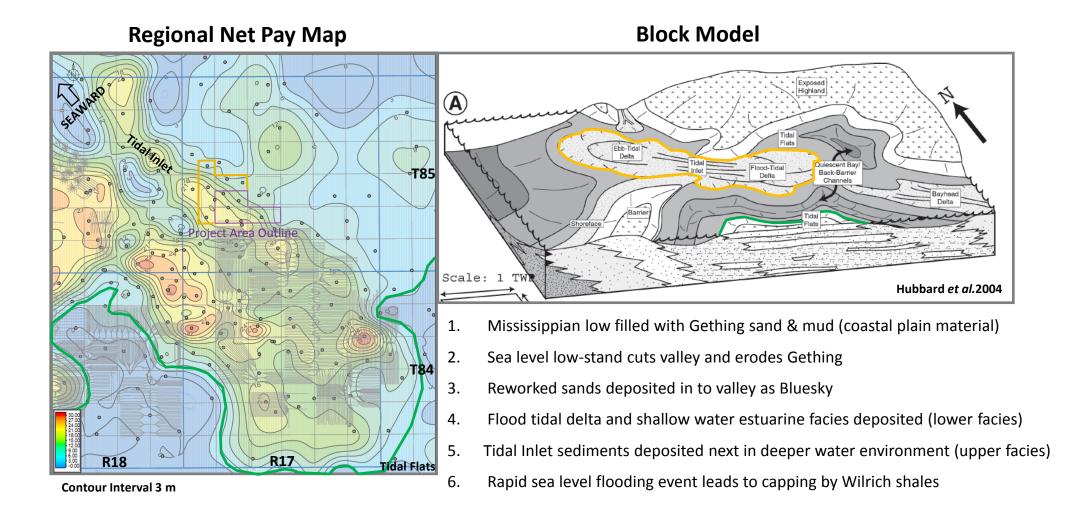
- Inject ~80% quality steam at wellhead
- Injection rates upto 250 m<sup>3</sup>/d cold water equivalent (CWE)
- Injection volume typically increases with successful cycles and mobilizes more oil farther into the reservoir
- Post injection soak for 5 to 15 days to allow latent heat of vaporization from steam to deliver energy into reservoir (condensation)
- Post soak produce until minimum temperature
  - ~40°C Upper Bluesky (lower viscosity)
  - ~60°C Lower Bluesky (higher viscosity)
- Repeat process

# Cap rock integrity

- Mini frac test conducted on the Wilrich Shale in well 1-18-85-17W5
- Additional lab tests were conducted on the Wilrich Shale to measure its geomechanical properties
- Both sets of results were fed into an analytical model
- Results of this evaluation gave a conservative MOP of 12.4 MPa (bottom hole pressure)
- This ensures that operation remains within the shear and tensile strength limits of the overlying Wilrich Shale formation


## Agenda

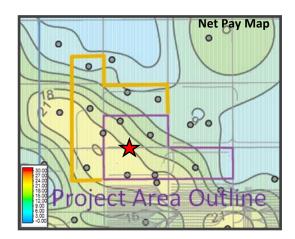
- Background
- Geology
- Wells
- Performance

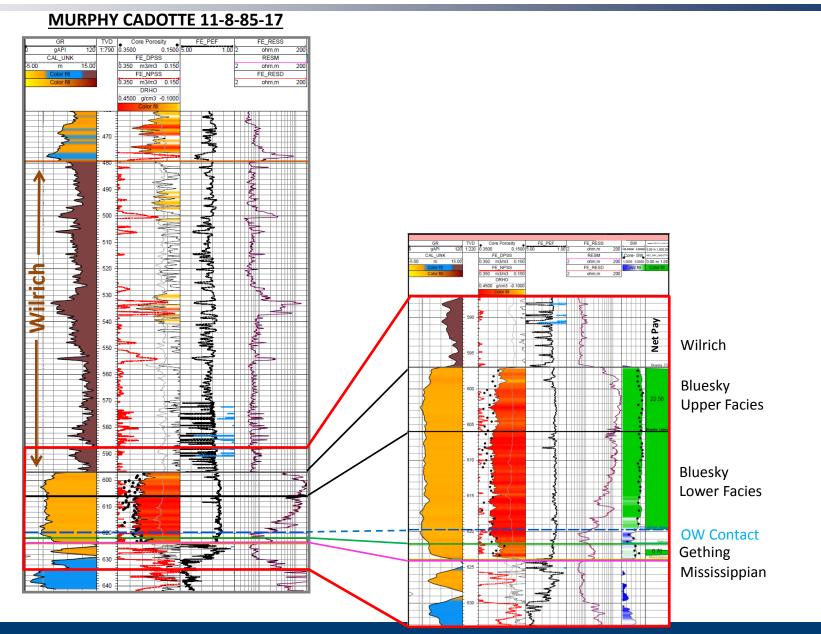

# Geology

- i) Depositional Overview
- ii) Type Log
- iii) Seismic
- iv) Top Bluesky Structure
- v) Base Bluesky Structure
- vi) Structural Cross Section & Average Reservoir Parameters
- vii) Bluesky Net Pay & OBIP
- viii) Bluesky Mineralogy

### **Geologic Time Scale**

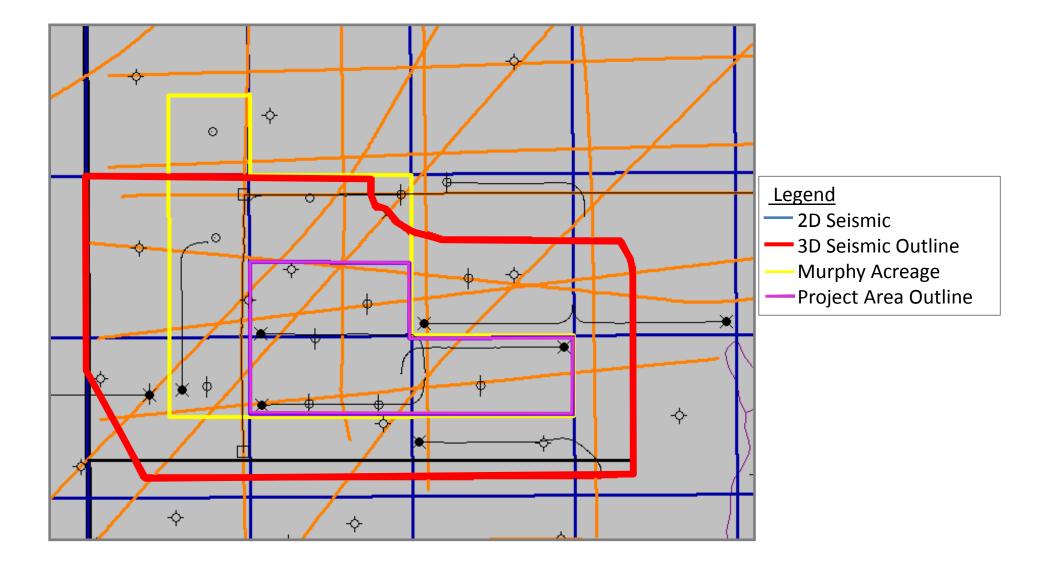



### **Depositional Overview**

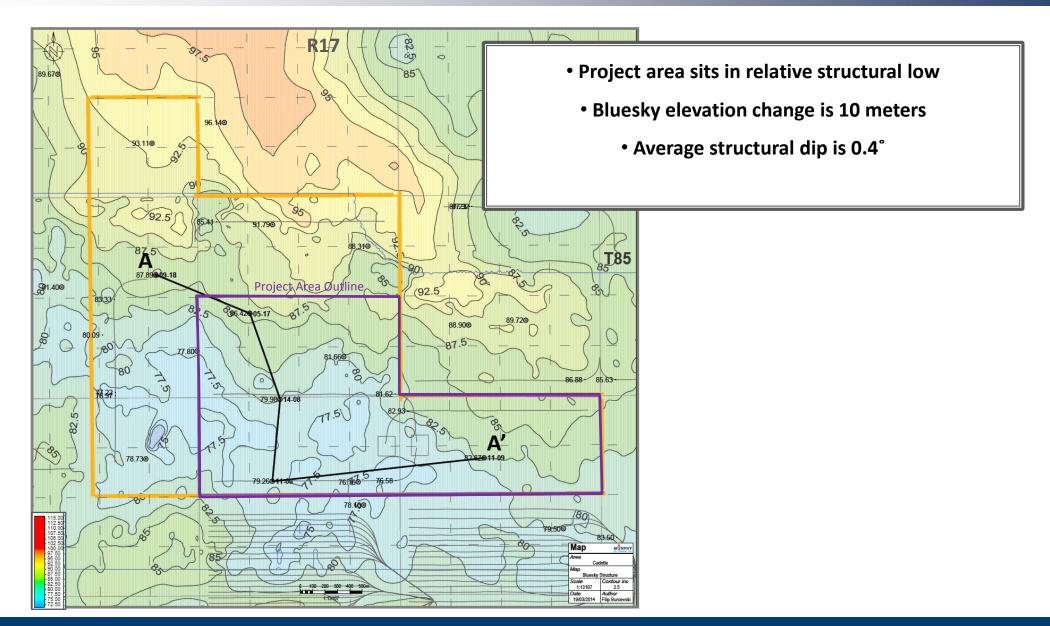



# Cadotte type log



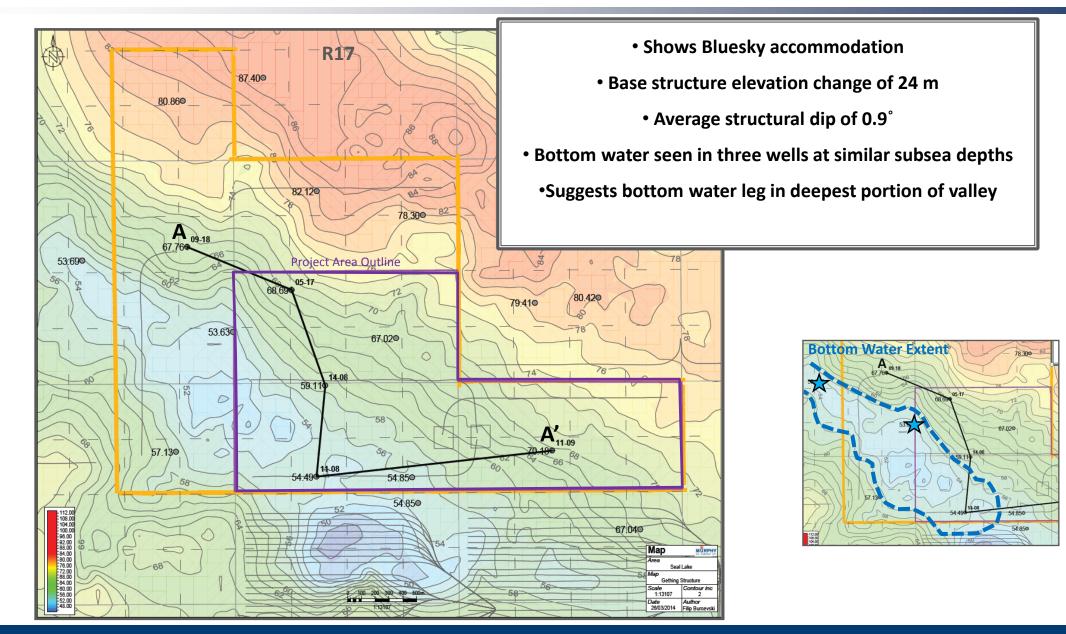

Gamma Ray < 65 API Porosity > 22 % Water Saturation (Archie) < 40 % **RW= 0.294** 





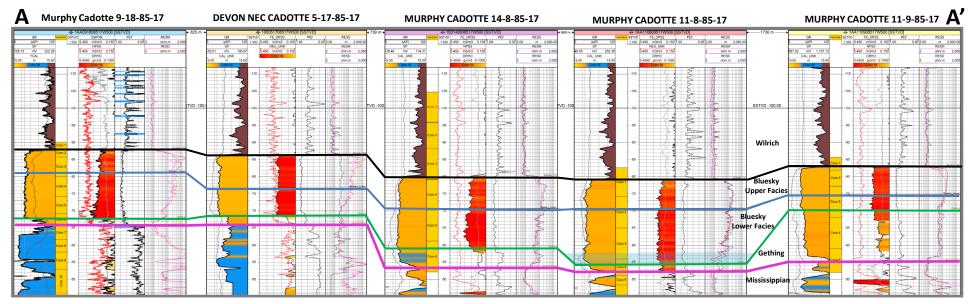

#### **MURPHY OIL CORPORATION**

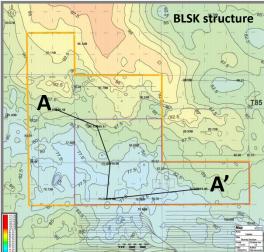
### Seismic

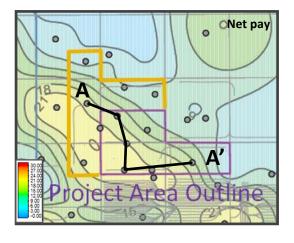



## **Top Bluesky Structure**




MURPHY OIL CORPORATION


### **Base Bluesky Structure**

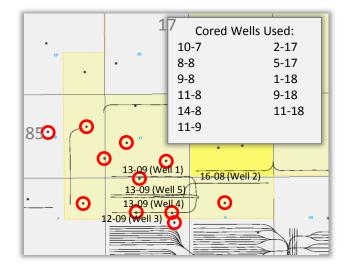



**MURPHY OIL CORPORATION** 

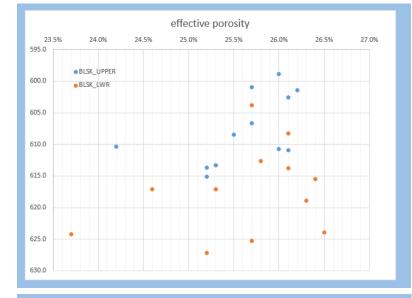
### **Structural Cross Section & Average Reservoir Parameters**

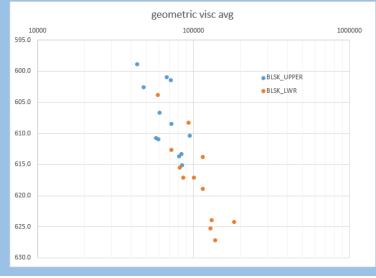


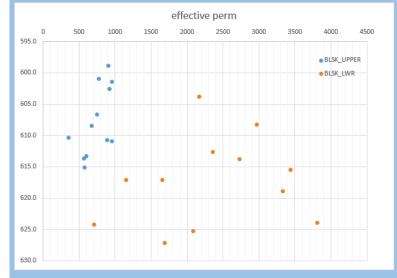


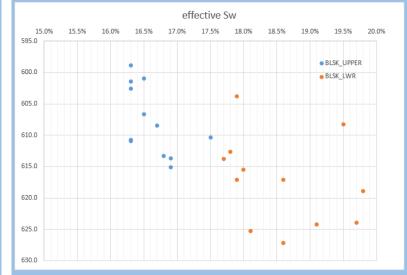



### **Average Reservoir Parameters**


- Average reservoir thickness is 20 meters
- Average depth is 600 m TVD
- Average Core Porosity: 30%
- Viscosity Range: 50,000 200,000 cP
- Average Permeability Upper Facies (KMAX): 0.7D
- Average Permeability Lower Facies (KMAX): 4.0D
- Average grain size: Fine Medium

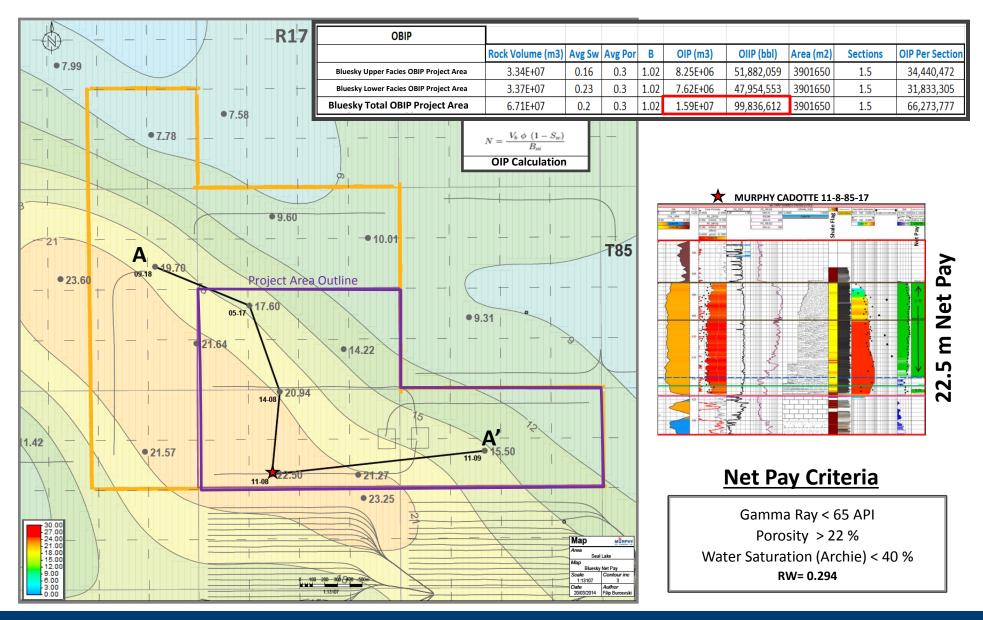

#### **MURPHY OIL CORPORATION**


### **Comparison of Upper and Lower Bluesky Reservoir Properties**




| - 1 |                  |                              |
|-----|------------------|------------------------------|
|     | 100051708517W500 | DEVON NEC CADOTTE 5-17-85-17 |
|     | 100090808517W500 | MURPHY CADOTTE 9-8-85-17     |
|     | 100140808517W500 | MURPHY CADOTTE 14-8-85-17    |
|     | 1AA011808517W500 | MURPHY CADOTTE 1-18-85-17    |
|     | 1AA021708517W500 | MURPHY CADOTTE 2-17-85-17    |
|     | 1AA080808517W500 | SHELL CADOTTE 8-8-85-17      |
|     | 1AA080908517W500 | SCL H99-05 CADOTTE 8-9-85-17 |
|     | 1AA091708517W500 | MURPHY CADOTTE 9-17-85-17    |
|     | 1AA091808517W500 | MURPHY CADOTTE 9-18-85-17    |
|     | 1AA110808517W500 | MURPHY CADOTTE 11-8-85-17    |
|     | 1AA110908517W500 | MURPHY CADOTTE 11-9-85-17    |
|     | 1AA111808517W500 | SHELL CADOTTE 11-18-85-17    |
|     |                  |                              |



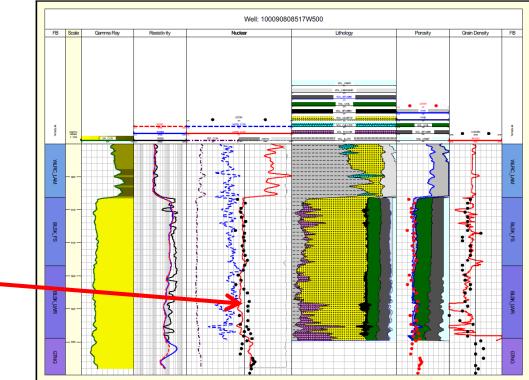


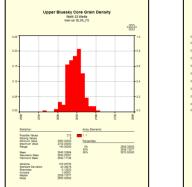


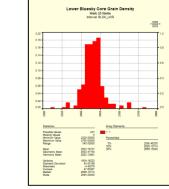



#### **MURPHY OIL CORPORATION**

## **Bluesky Net Pay & OBIP**



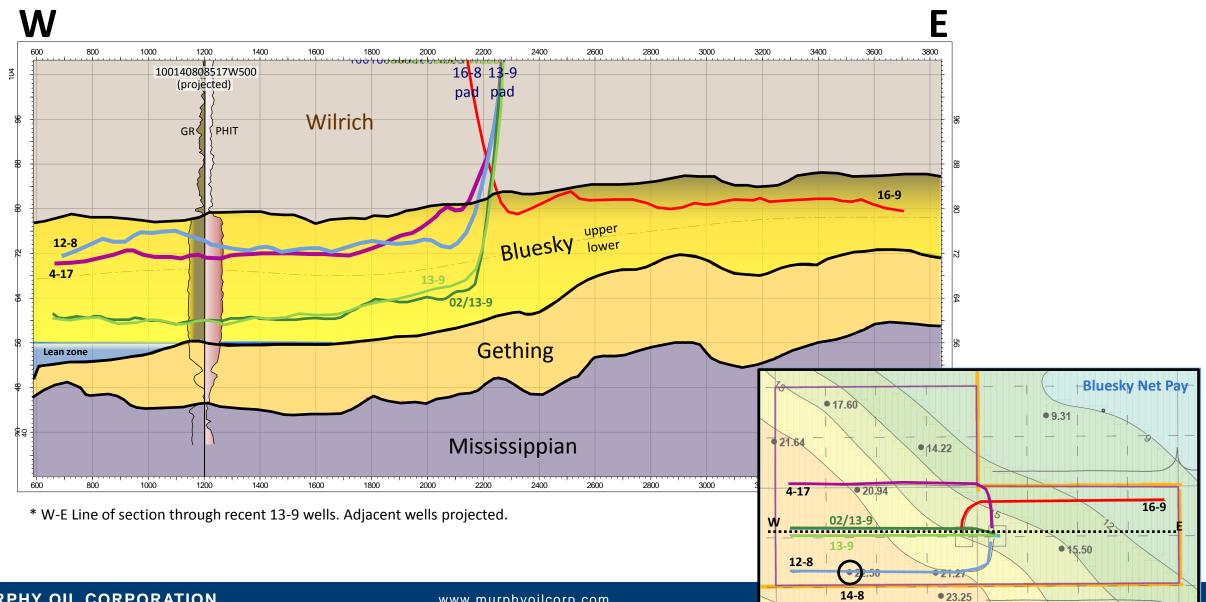


MURPHY OIL CORPORATION


# **Bluesky Mineralogy**

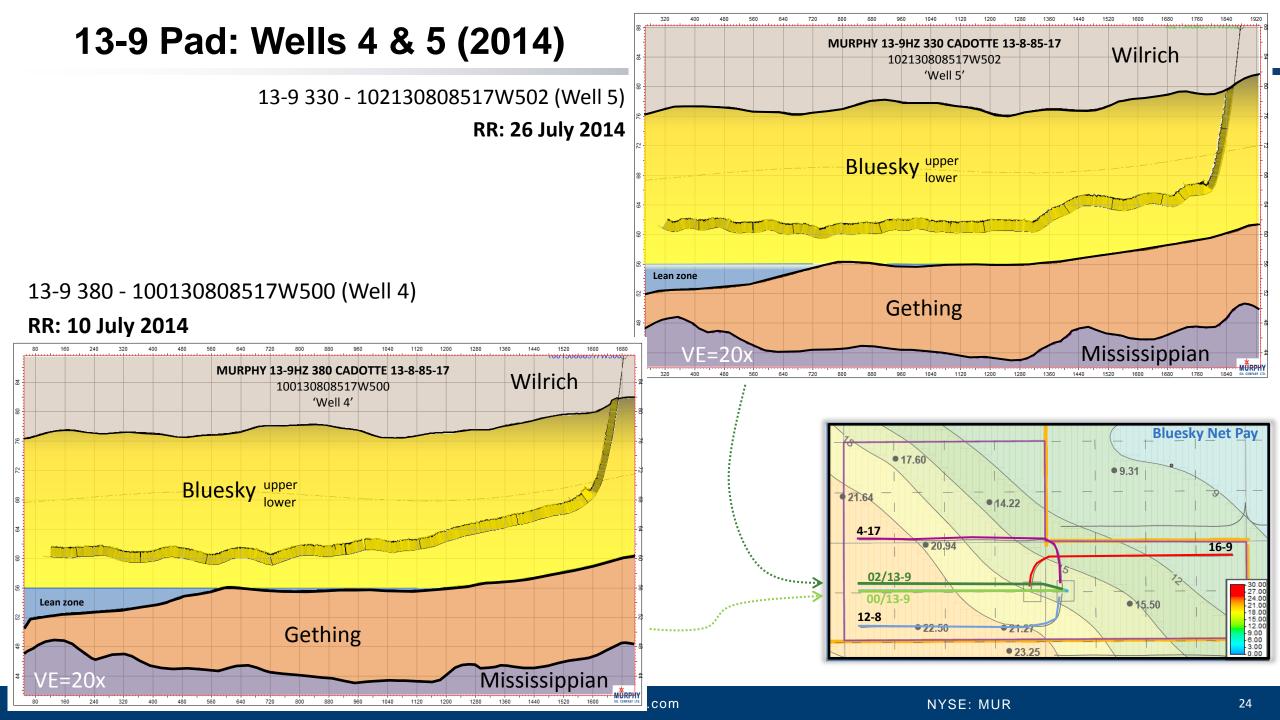
### • XRD analysis in three wells:

- 05-17-085-17W5, 06-16-085-17W5, 09-08-085-17W5
- Quartz Content is approximately 55–80%
- Dolomite Content is approximately 4–31%
- Clay Content is approximately 13% to 23% (approximately <sup>2</sup>/<sub>3</sub> Kaolinite, <sup>1</sup>/<sub>3</sub> Illite)
- XRD calculated grain densities are between 2,670 to 2,720 kg/m<sup>3</sup>
- Core grain density and porosity read lower than standard sandstone density porosity
- This density difference suggests the possibility of a very "light" material being present
  - Upper Bluesky Core Grain Density Average: 2,640 kg/m<sup>3</sup>
  - Lower Bluesky Core Grain Density Average: 2,623 kg/m<sup>3</sup>
  - Carbonaceous material appears responsible for lowering the grain density
  - Carbonaceous material commonly observed in core

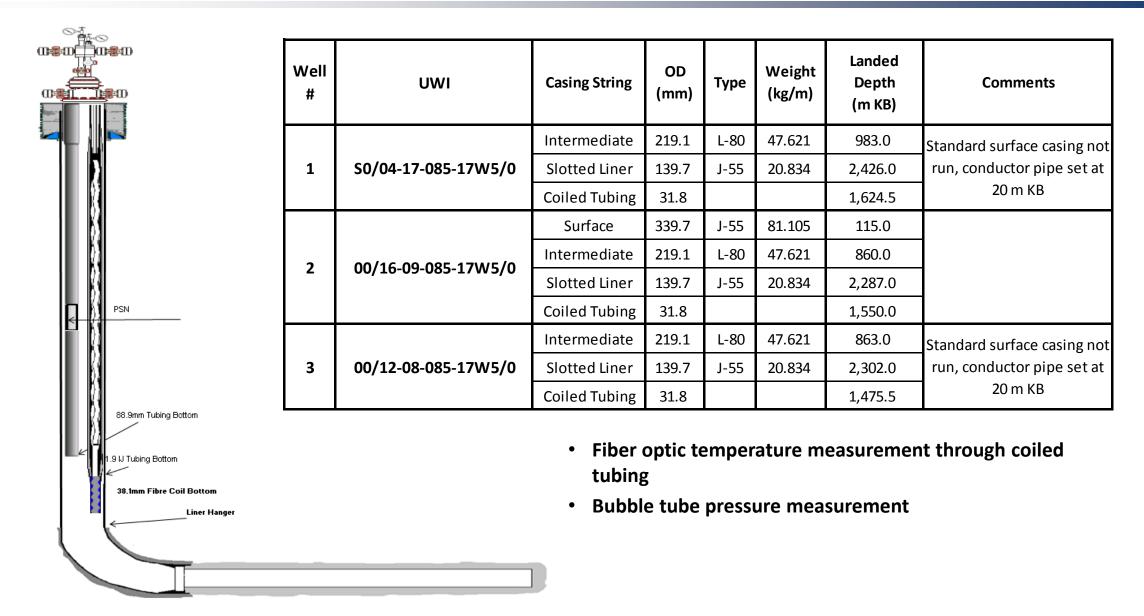




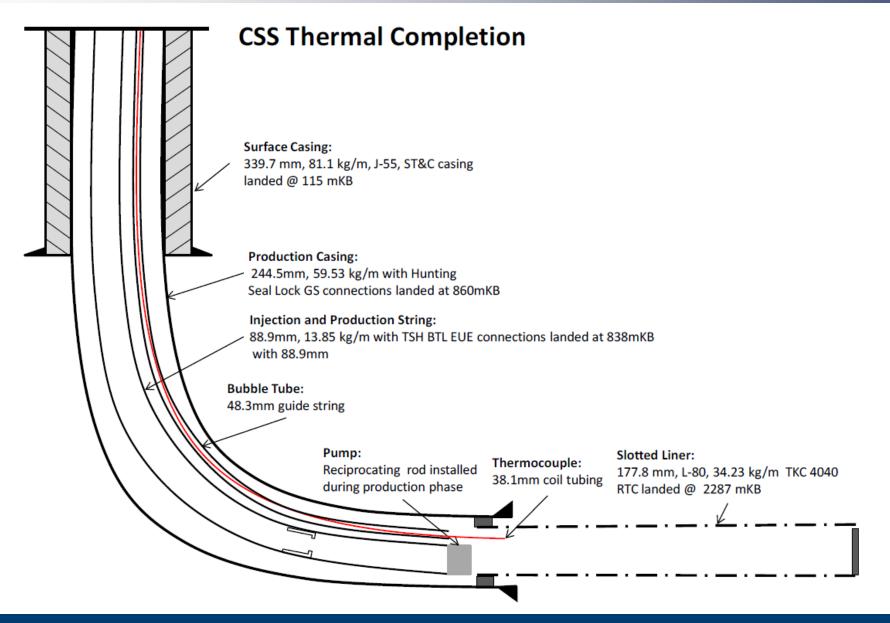




### Subsurface

- Background
- Geology
- Wells
- Performance


### **Cadotte: Schematic West to East section\***




#### **MURPHY OIL CORPORATION**



## Wellbore Diagram Wells 1, 2 & 3

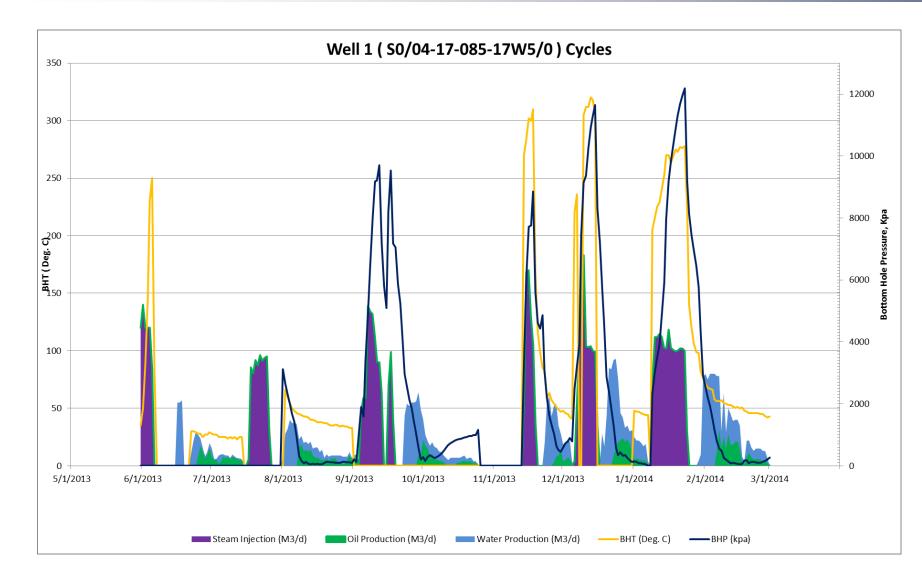


## Wellbore Diagram Wells 4 & 5



# Well 4 & 5 Drilling

- Well 4 (S380) was drilled as planned with lateral ~3m above Gething in Lower Bluesky
  - Used Gyro survey tool to guarantee perfect well placement
- Well 5 (S330) drilling complications
  - Gyro tool was not used due to costs of drilling
  - Well veered off towards well 4 due to MWD malfunction
  - Came within ~15m of hitting well 4 when magnetic interference was noticed
  - A new MWD and Gyro were ran to confirm well survey
- Well 5 Drilling Remediation
  - Backed out of the lateral and used a bridge plug with multiple cement plugs to isolate dead leg
  - Sidetracked off of cement plug to complete the drilling of the well correct azimuth
  - Ran blank liner joints across the dead leg to minimize risk of steam communication to well 4


# **Artificial Lift**

- Surface Pumping Equipment
  - Hydraulic pump jack with electric drive motors
    - Currently using both Tundra SSI pumping units(multiple sizes) and Weatherford VSH2
- Bottom hole Pumps
  - Original Wells 100/16-09-085-17W5 and 100/12-08-085-17W5
    - 63.5 mm rod insert pumps
    - Pump size constrained by tubing and casing size
    - Wells were not completed to accommodate rod pumps
  - New Drills Well 4 S380 and Well 5 S330
    - 82.55 mm rod insert pumps
    - Larger tubing and anticipated higher IP rates

### Subsurface

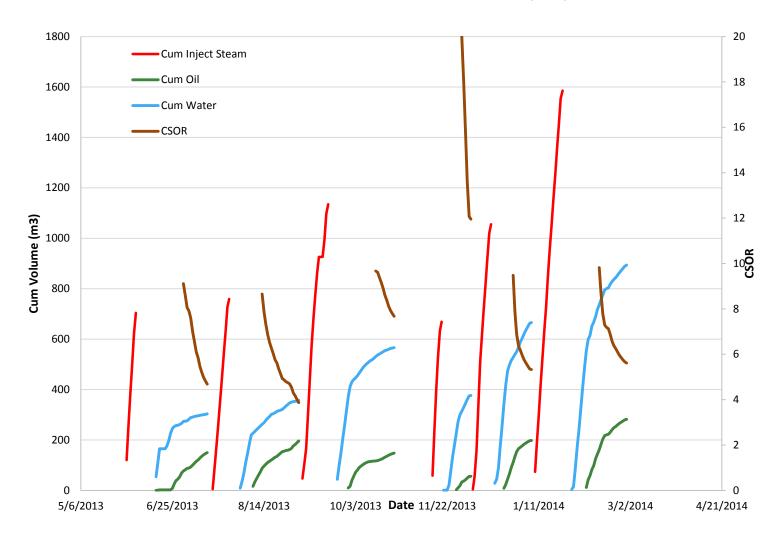
- Background
- Geology
- Wells
- Performance

### Well 1 0S/04-17 Performance



- Cycle 3 production shutin on October 24, 2013, due to:
  - Low oil production rates in October, final 15 days averaged 6.7 m<sup>3</sup>/d
  - Temperature of produced fluids for final 15 days averaged 28°C, below the recommended shut-in temperature of the

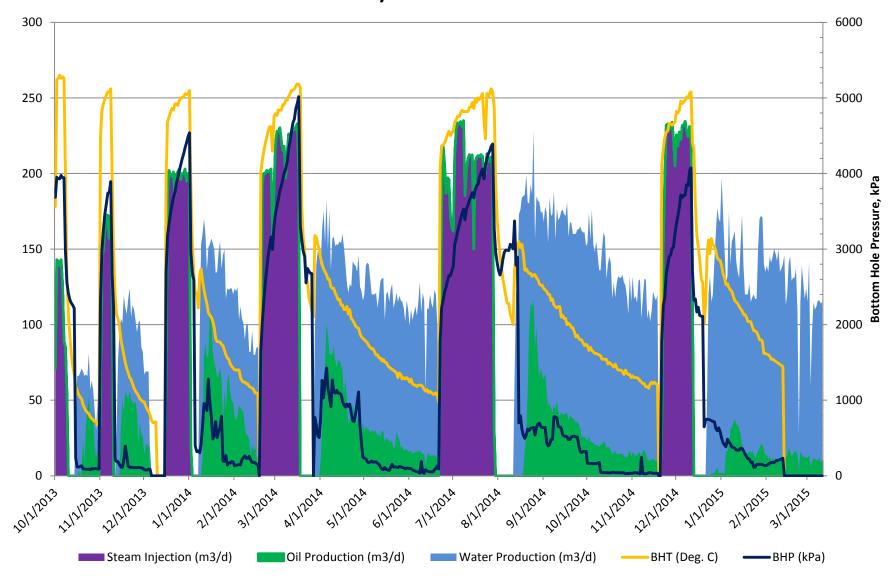
Upper Bluesky (40°C)


 OTSG used for Cycle 2 of Well 2 (100/16-09) until November 10, 2013, followed by initiation of Cycle 4 at Well 1

### Well 1 0S/04-17 Performance

Well 1 0S/04-17 Cum Volume (m<sup>3</sup>)

6 Cycles completed

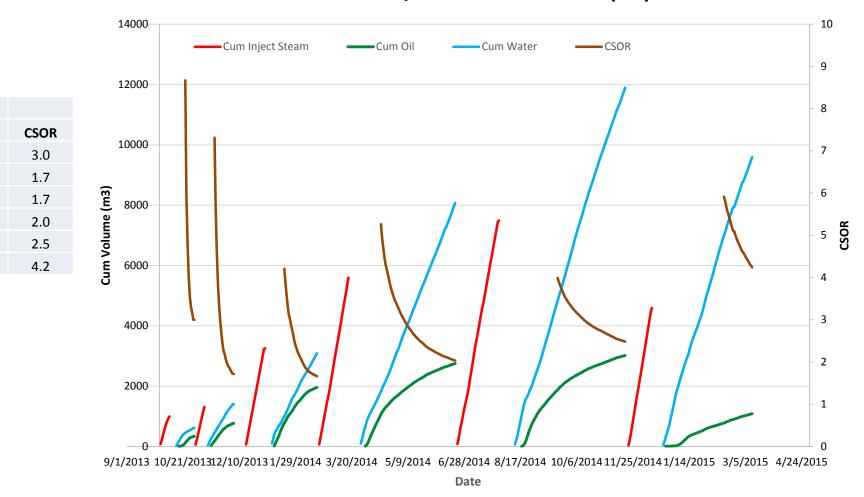

|        | Cumula |           |     |      |  |
|--------|--------|-----------|-----|------|--|
| Cycles | Steam  | Oil Water |     | CSOR |  |
| 1      | 704    | 150       | 303 | 4.7  |  |
| 2      | 759    | 196       | 358 | 3.9  |  |
| 3      | 1135   | 148       | 566 | 7.7  |  |
| 4      | 669    | 56        | 376 | 12   |  |
| 5      | 1056   | 198       | 666 | 5.3  |  |
| 6      | 1585   | 282       | 894 | 5.6  |  |



MURPHY OIL CORPORATION

### Well 2 100/16-09 Performance

100/16-09-085-17W5




- OTSG boiler tube failure occurred at ~19:00, December 12, 2014
  - Cycle 6 steam injection therefore ended prematurely
- Cycle 6 continued with planned soak period, followed by production

32

**MURPHY OIL CORPORATION** 

### Well 2 100/16-09 Performance

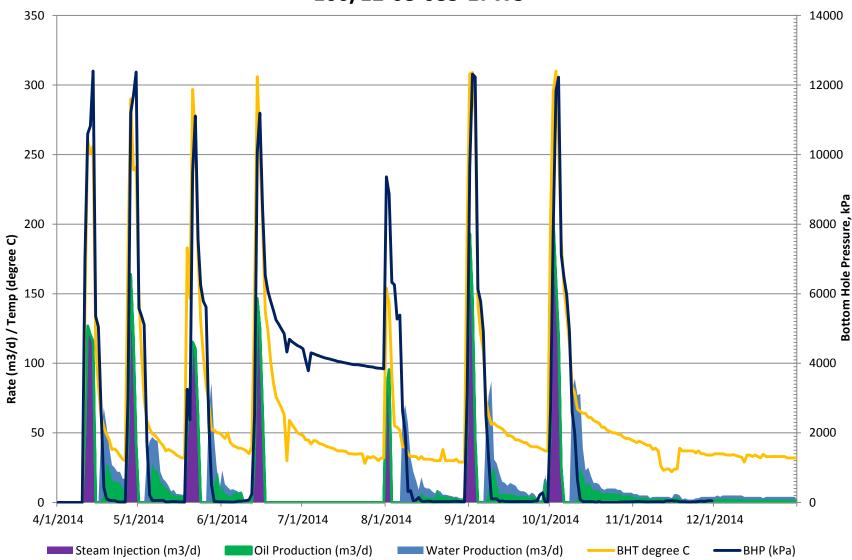


Well 2 100/16-09 Cum Volume (m<sup>3</sup>)

6 Cycles completed

Steam

Cycles


 Cumulative Volume (m3)

Oil

Water

### Well 3 100/12-08 Performance

100/12-08-085-17W5



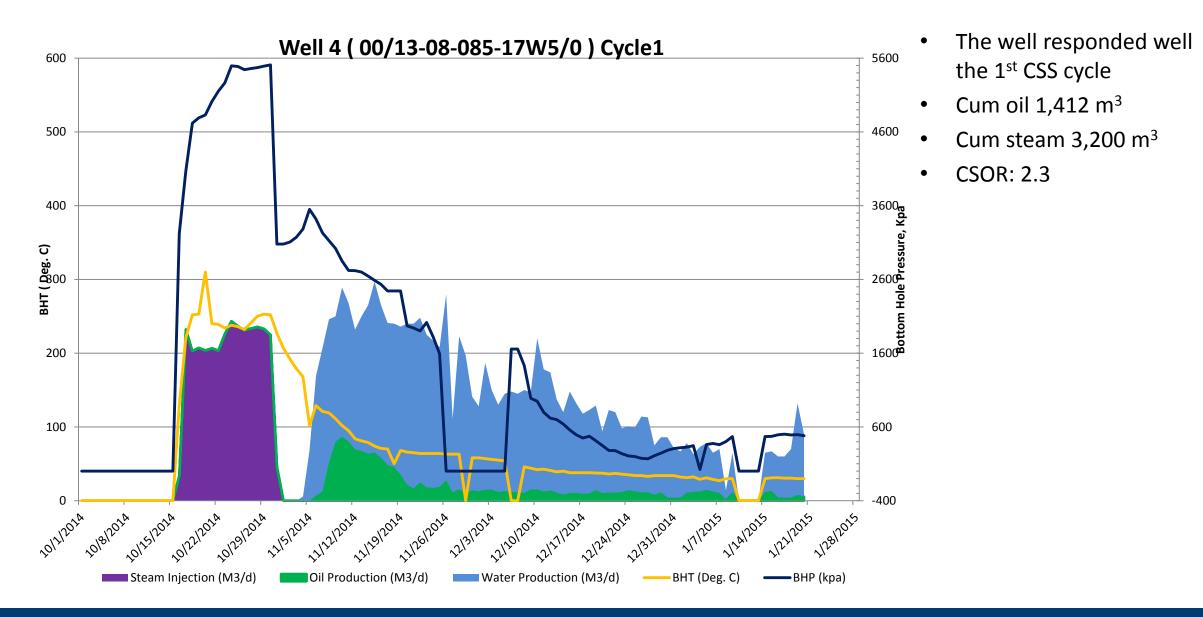
During 4<sup>th</sup> cycle drilling of well 4 & 5 occurred, therefore no production during that time.

۲

MURPHY OIL CORPORATION

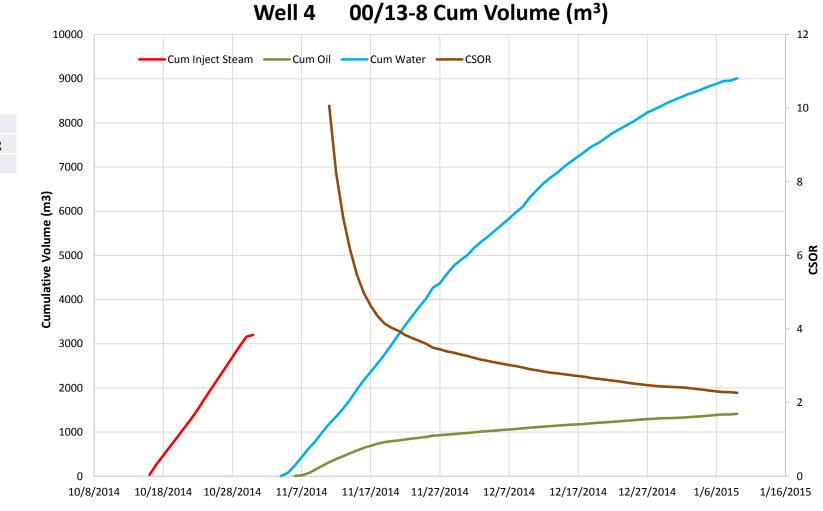
### Well 3 100/12-08 Performance

|            | 600                    | Cum Inject Steam | n <u> </u> | Cum Water CSOR    | 2         |           |            | 14        |
|------------|------------------------|------------------|------------|-------------------|-----------|-----------|------------|-----------|
|            |                        |                  |            | 1                 |           |           |            | - 12      |
|            | 500                    |                  |            |                   |           |           |            |           |
| CSOR       |                        |                  |            |                   |           |           |            |           |
| 3.0        |                        |                  |            |                   |           |           |            | - 10      |
| 2.4<br>4.3 | 400                    |                  |            |                   |           |           |            |           |
| 7.2        | m3)                    |                  |            |                   |           |           |            |           |
| 2.7        | me (                   |                  |            |                   |           |           |            | - 8       |
| 1.5        | , olu                  |                  |            |                   |           |           |            | CSOR      |
|            | Cumulative Volume (m3) |                  |            |                   |           |           |            | Č         |
|            | ulat                   |                  |            |                   |           |           |            | - 6       |
|            | Cum                    |                  | X          |                   | X         |           |            |           |
|            | 200                    |                  |            |                   |           |           |            |           |
|            |                        |                  |            |                   |           |           |            | - 4       |
|            |                        |                  |            |                   |           |           |            |           |
|            | 100                    |                  |            |                   |           |           |            |           |
|            |                        |                  |            |                   |           | ·/        |            | - 2       |
|            |                        | · · / · /        | • /        | · · · · · ·       |           |           |            |           |
|            | 0                      |                  |            |                   |           |           |            | 0         |
|            | 3/2/201                | 4/21/2014        | 6/10/2014  | 7/30/2014<br>Date | 9/18/2014 | 11/7/2014 | 12/27/2014 | 2/15/2015 |


Well 3

100/12-8 Cum Volume (m<sup>3</sup>)

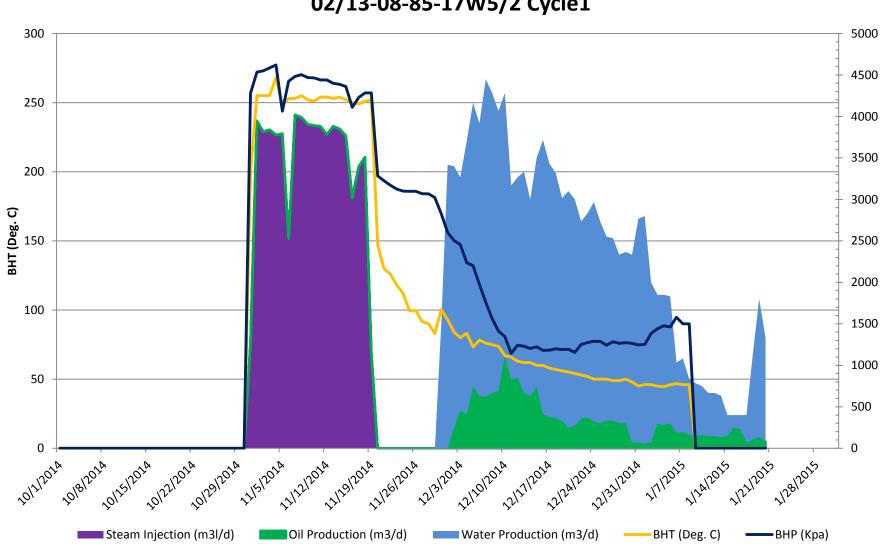
|        | Cumula |     |       |      |
|--------|--------|-----|-------|------|
| Cycles | Steam  | Oil | Water | CSOR |
| 1      | 413    | 140 | 203   | 3.0  |
| 2      | 370    | 153 | 165   | 2.4  |
| 3      | 422    | 98  | 221   | 4.3  |
| 4      | 546    | 75  | 308   | 7.2  |
| 5      | 437    | 164 | 290   | 2.7  |
| 6      | 560    | 367 | 523   | 1.5  |


www.murphyoilcorp.com

### Well 4 100/13-08 Performance



MURPHY OIL CORPORATION


### Well 4 100/13-08 Performance



|        | Cumula |      |       |      |
|--------|--------|------|-------|------|
| Cycles | Steam  | Oil  | Water | CSOR |
| 1      | 3200   | 1412 | 9009  | 2.3  |

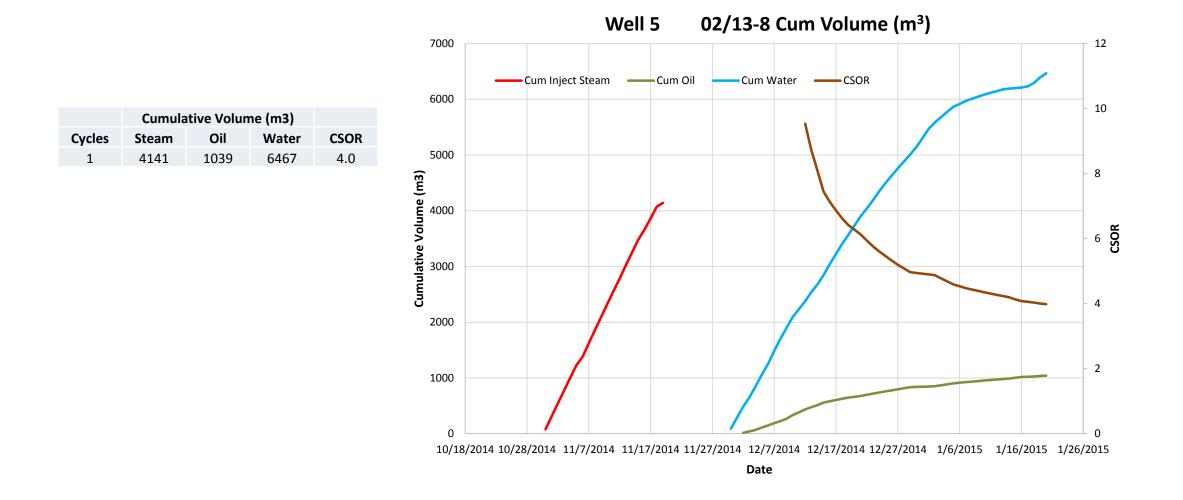


## Well 5 102/13-08 Performance



02/13-08-85-17W5/2 Cycle1

- The well responded well the 1<sup>st</sup> CSS cycle
- Cum oil 1,039 m<sup>3</sup> ٠
- Cum steam: 4,141 m<sup>3</sup> .
- **CSOR: 4.0** ٠


**MURPHY OIL CORPORATION** 

Kpa

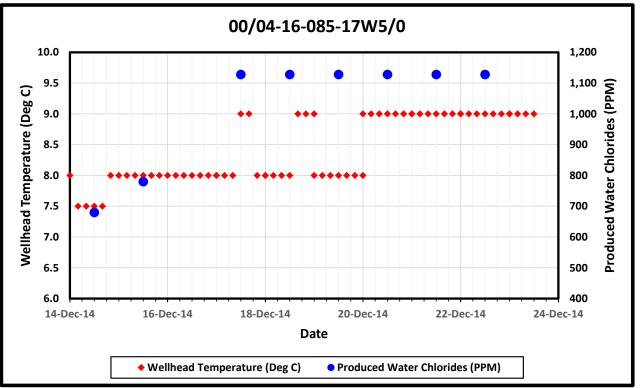
Hole

Bottom

#### Well 5 102/13-08 Performance



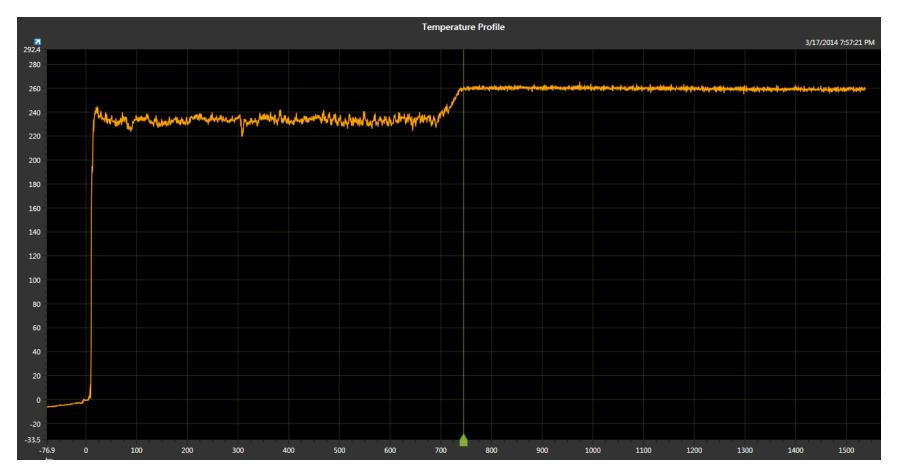
## **Recoveries for each Well**


| Well<br># UWI |                     | Cumulative Production @<br>December 31, 2015 (m <sup>3</sup> ) |         | Producing<br>Formation | Recovered Oil<br>(% of Thermal | Ultimate RF<br>(Thermal) |          |
|---------------|---------------------|----------------------------------------------------------------|---------|------------------------|--------------------------------|--------------------------|----------|
| "             |                     | Primary                                                        | Thermal | Total                  | Tormation                      | EUR)                     | (merman) |
| 1             | S0/04-17-085-17W5/0 | 3,601                                                          | 928     | 4,528                  | Upper Bluesky                  | 2.8%                     | 15%      |
| 2             | 00/16-09-085-17W5/0 | 8,023                                                          | 9,520   | 17,543                 | Upper Bluesky                  | 21.3%                    | 15%      |
| 3             | 00/12-08-085-17W5/0 | 1,186                                                          | 873     | 2,059                  | Upper Bluesky                  | 2.6%                     | 15%      |
| 4             | 00/13-08-085-17W5/0 | 0                                                              | 777     | 777                    | Lower Bluesky                  | 1.9%                     | 22%      |
| 5             | 02/13-08-085-17W5/0 | 0                                                              | 528     | 528                    | Lower Bluesky                  | 1.3%                     | 22%      |

- Errors in calculations were identified in column "Recovered Oil (% of Thermal EUR)", which have been corrected
- Ultimate recovery factors (thermal) for each well are tied to the respective OOIP for the producing formation

#### Well 2 Discussion

- Well 2, even though it had no Lower Bluesky, showed a lateral facies change in the Upper Bluesky which gave it much higher permeability than the Upper Bluesky in wells 1 and 3 (well 2 was closer to the shoreline = higher energy)
  - This combined with the lower viscosity of the oil drilled at the top of the zone, resulted in well 2 having the best overall
    production of the first three wells (all drilled into the Upper Bluesky) on both primary and thermal


## **Offsetting Primary Well Observations**



- A minor temperature increase at surface was identified at the offsetting primary well 04-16-085-17W5 in December, 2014, along with an increase in produced water chlorides
- The AER was notified of this event and the potential that the change in temperature and produced water chlorides may be a result of the Cadotte Thermal Pilot operations due to proximity to well 16-09-085-17W5
- Murphy is of the opinion that this minor change in producing conditions is <u>not</u> a result of the Cadotte Thermal pilot operations:
  - Inter-well distance between 04-16 and 16-09 is significant (250 m)
  - Minor temperature and produced water composition fluctuations are common in primary producing wells
- Data shown was communicated/discussed with the AER field office, no formal report has been written with respect to this event
  - The 04-16 well has not produced since December 2014
  - In the event that the Cadotte Thermal pilot is restarted in the future, monitoring of the 04-16 well will be included as part of the startup/thermal producing program

## **Example of Temperature profile (fiber-optic)**

Fiber-optic's installed in well 1, 2, and 3. 00/16-09-085-17W5/0 (well 2)



# **Fiber Optic Learnings**

#### Advantages

- Useful for determining where production is coming form in the horizontal in particular from well 2
- Can easily determine steam conformance in all wells
- Accurate and real time information accessible remotely
- Great for trending and analyzing well performance from a steam and production standpoint

#### • Disadvantages

- Not really suitable for temperatures above 300°C seen in Well 1 and 3 unless additional design measures are taken
- Expensive compared to thermocouples
- Had multiple failures on well 1 resulting in downtime

## **Individual Well Production Discussion**

#### 1. Well 2 (00/16-09-085-17W5/0)

- Fiber optic data shows steam/heat conformance throughout horizontal section
- Analysis of production cycles 3 6 illustrated a rise in the heel temperature due to the flow of hot fluid from the horizontal section of the well

#### 2. Well 1 (S0/04-17-085-17W5/0) and Well 3 (00/12-08-085-17W5/0)

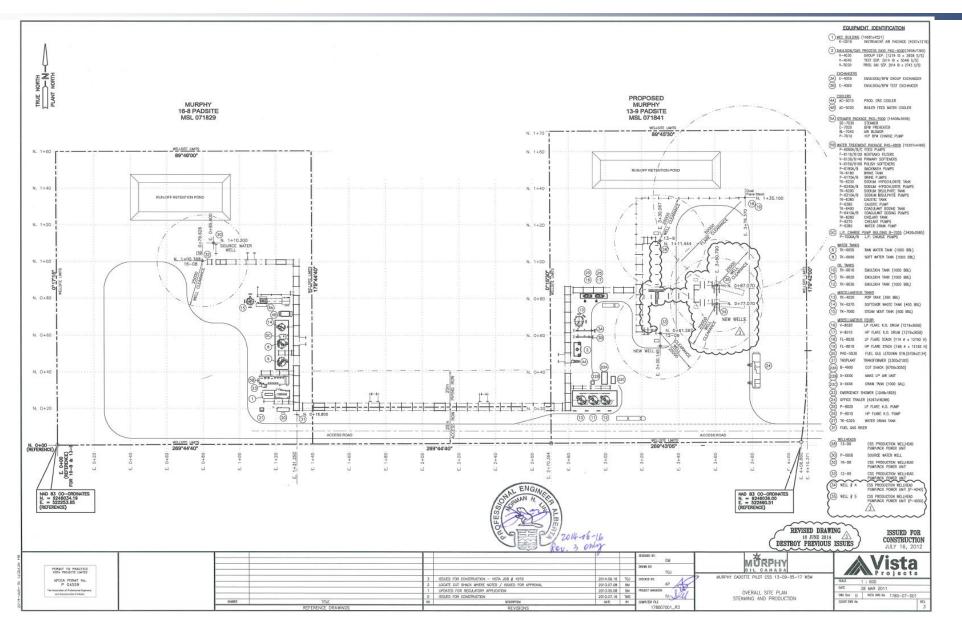
- Analysis of the steam and production cycles indicated that steam was only getting to the heel with warm fluid at the toe
- Actual production data confirmed near wellbore stimulus occurred as rod hang-up would occur due to a lack of heat in the produced fluid

#### 3. Well 4 (00/13-08-085-17W5/0) and Well 5 (02/13-08-085-17W5/0)

- Bottom hole temperature data does show an increase in temperature in the first production cycle for both wells, assuming that this is a similar phenomena that occurred in Well 2, with steam/heat conformance beyond the heel of the well
- Only one cycle in Wells 4 and 5 before failure of OTSG, thermocouples used instead of fiber optic

## Agenda

- Subsurface
- Surface
- Future Plans
- Conclusions

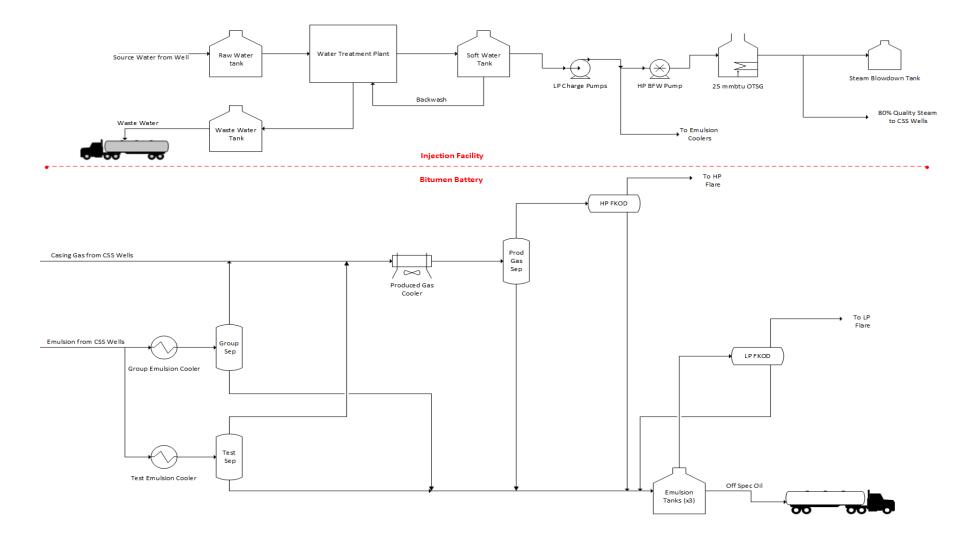

## Surface

# • Facilities

- Facility Performance
- Measurement and Reporting
- Water Uses
- Sulphur Production
- Summary of Environmental Issues
- Compliance

**Facilities** 

Murphy Cadotte CSS Pilot – Plot Plan




**MURPHY OIL CORPORATION** 

www.murphyoilcorp.com

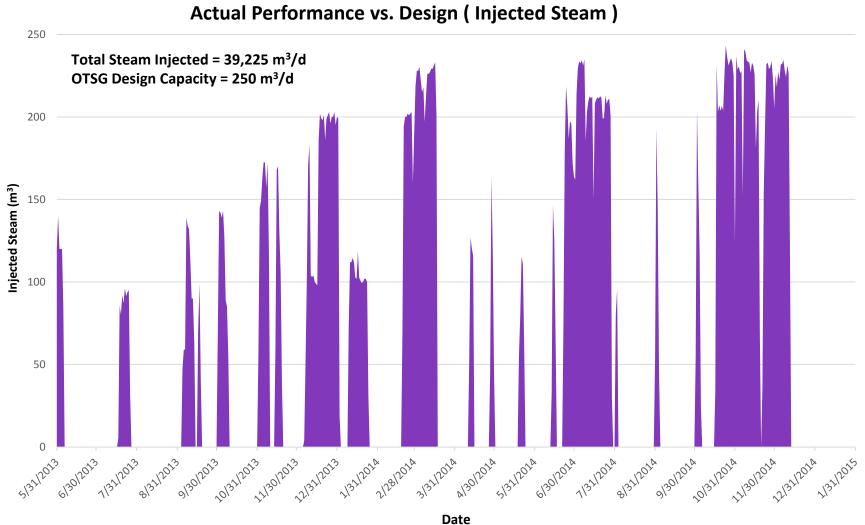
### **Facilities**

#### Murphy Cadotte CSS Pilot - Plant Schematic



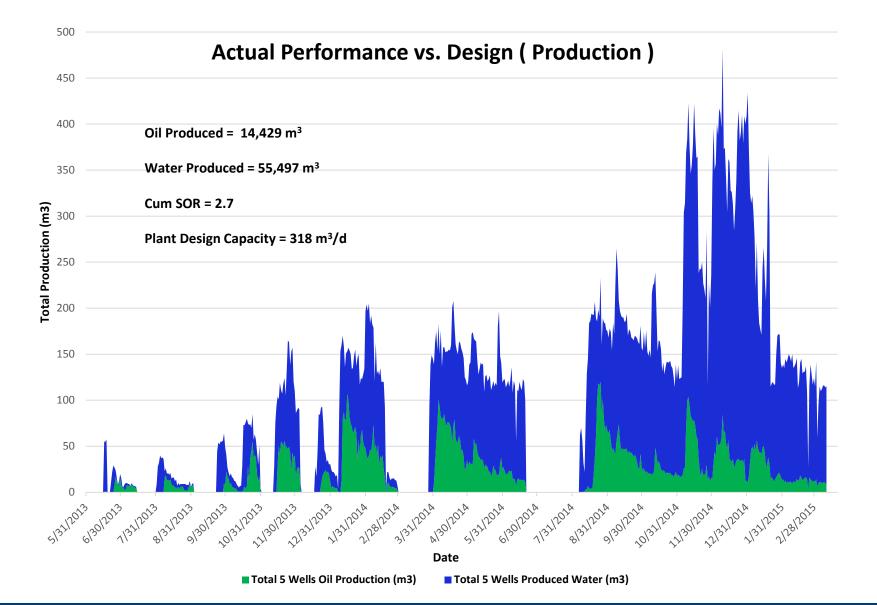
- Bitumen Treatment
  - Each production well can be pumped to either the group or test system
    - Each system is comprised of an emulsion cooler and a 2-phase separator and associated instrumentation
  - Emulsion is then sent to one of 3 emulsion tanks (159 m<sup>3</sup> each)
    - Heat + retention time used to dry oil to 1-10% BS&W
    - Off-spec oil is trucked to 1-26-083-15 W5M Oil Cleaning Facility
    - Produced water is trucked to 4-22-084-18 W5M salt water disposal well
- Water Treatment
  - Package designed to treat fresh water and produce BFW suitable for a 7,320 kWh OTSG
    - Includes 2 x 100% trains encompassing iron removal, softener and polisher
- Steam Generation
  - Maximum output of OTSG =  $250 \text{ m}^3/\text{d}$  CWE steam @ 80% quality

## **Facility Performance - Power**


- **POWER CONSUMPTION Import**
- No power generation

|           | MONTH | TOTAL POWER CONSUMPTION (kWh) |
|-----------|-------|-------------------------------|
| 1/1/2014  |       | 199,530.09                    |
| 2/1/2014  |       | 189,890.42                    |
| 3/1/2014  |       | 200,993.76                    |
| 4/1/2014  |       | 190,020.24                    |
| 5/1/2014  |       | 180,698.76                    |
| 6/1/2014  |       | 153,982.52                    |
| 7/1/2014  |       | 149,219.57                    |
| 8/1/2014  |       | 149,404.40                    |
| 9/1/2014  |       | 192,517.63                    |
| 10/1/2014 |       | 227,481.97                    |
| 11/1/2014 |       | 288,451.03                    |
| 12/1/2014 |       | 288,970.49                    |
| 1/1/2015  |       | 263,373.98                    |
| 2/1/2015  |       | 201,841.00                    |
| 3/1/2015  |       | 192,213.78                    |
| 4/1/2015  |       | 182,605.64                    |
| 5/1/2015  |       | 174,333.26                    |
| 6/1/2015  |       | 163,611.71                    |
| 7/1/2015  |       | 172,496.09                    |
| 8/1/2015  |       | 81,818.28                     |
| 9/1/2015  |       | 16,640.16                     |
| 10/1/2015 |       | 19,235.75                     |
| 11/1/2015 |       | 25,581.29                     |
| 12/1/2015 |       | 29,815.94                     |
| 1/1/2016  |       | 44,854.85                     |
| 2/1/2016  |       | 44,933.48                     |

## **Facility Performance - Gas**


- All gas produced is flared. No gas conservation.
- Fuel gas is purchased via third party gas line
- No venting.
- Lessons learned:
  - Set up facility to potentially use produced gas (not as clean) to eliminate routine flaring.
  - Not economical to send produced gas to processing facility (~20 km+ distance).

| Month  | Gas<br>Production<br>(e3m3) | Flared Gas<br>(e3m3) | Fuel Gas<br>(purchased<br>E3m3) | Vented Gas<br>(e3m3) | Recovered<br>Gas (e3m3) |
|--------|-----------------------------|----------------------|---------------------------------|----------------------|-------------------------|
| Jan-14 | 55.9                        | 57                   | 153.4                           | 0                    | 0                       |
| Feb-14 | 32.1                        | 33.1                 | 113.2                           | 0                    | 0                       |
| Mar-14 | 0                           | 1.1                  | 136.4                           | 0                    | 0                       |
| Apr-14 | 39.9                        | 42                   | 18.3                            | 0                    | 0                       |
| May-14 | 50.4                        | 52.7                 | 27.1                            | 0                    | 0                       |
| Jun-14 | 18.8                        | 21                   | 24.2                            | 0                    | 0                       |
| Jul-14 | 0                           | 1.3                  | 4.3                             | 0                    | 0                       |
| Aug-14 | 41                          | 42.1                 | 2.9                             | 0                    | 0                       |
| Sep-14 | 0.2                         | 16.1                 | 0.2                             | 0                    | 0                       |
| Oct-14 | 27.3                        | 1.6                  | 41.6                            | 0                    | 0                       |
| Nov-14 | 0.3                         | 0                    | 40.5                            | 0                    | 0                       |
| Dec-14 | 20.1                        | 20.1                 | 14.4                            | 0                    | 0                       |
| Jan-15 | 20.3                        | 20.3                 | 0                               | 0                    | 0                       |
| Feb-15 | 0.3                         | 0.3                  | 0                               | 0                    | 0                       |
| Mar-15 | 0.1                         | 0.1                  | 2.5                             | 0                    | 0                       |
| Apr-15 | 0.5                         | 0.5                  | 0                               | 0                    | 0                       |
| May-15 | 0.3                         | 0.3                  | 0                               | 0                    | 0                       |
| Jun-15 | 33                          | 33                   | 0.4                             | 0                    | 0                       |
| Jul-15 | 45.3                        | 45.3                 | 1.1                             | 0                    | 0                       |
| Aug-15 | 9.9                         | 9.7                  | 0                               | 0                    | 0                       |
| Sep-15 | 0                           | 0                    | 0                               | 0                    | 0                       |
| Oct-15 | 0                           | 0                    | 0                               | 0                    | 0                       |
| Nov-15 | 0                           | 0                    | 0                               | 0                    | 0                       |
| Dec-15 | 0                           | 0                    | 0                               | 0                    | 0                       |



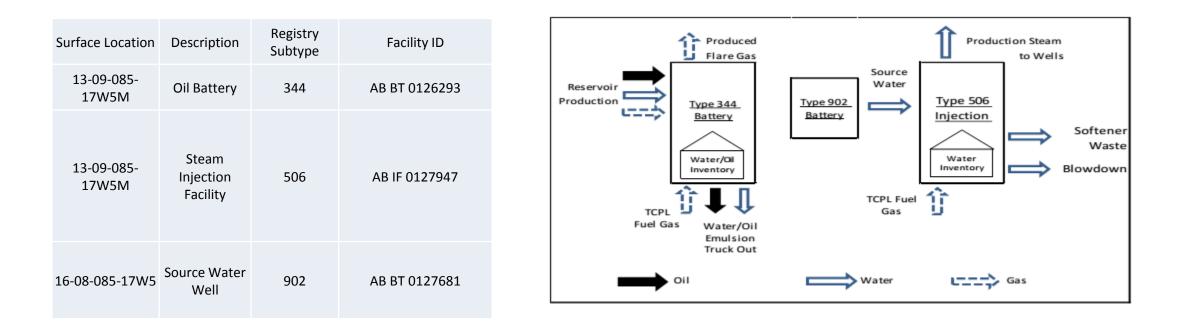
Total 5 Wells Injected Steam (m3)

www.murphyoilcorp.com



**MURPHY OIL CORPORATION** 

www.murphyoilcorp.com


- Operating Issues
  - OTSG Initial challenges encountered with control philosophy
  - New control panel installed to mitigate burner control issues
- Reliability
  - Were unable to meet target steam slugs on 16-09 initially due to OTSG reliability issues
  - Building around OTSG for cold weather and new control system installed to increase reliability
  - Achieved target steam rates of 250 m<sup>3</sup>/d
- Downtime
  - December 2015 a major boiler tube failure was found
  - Market conditions made economics on repair unfavourable
  - Source water problem led to failure

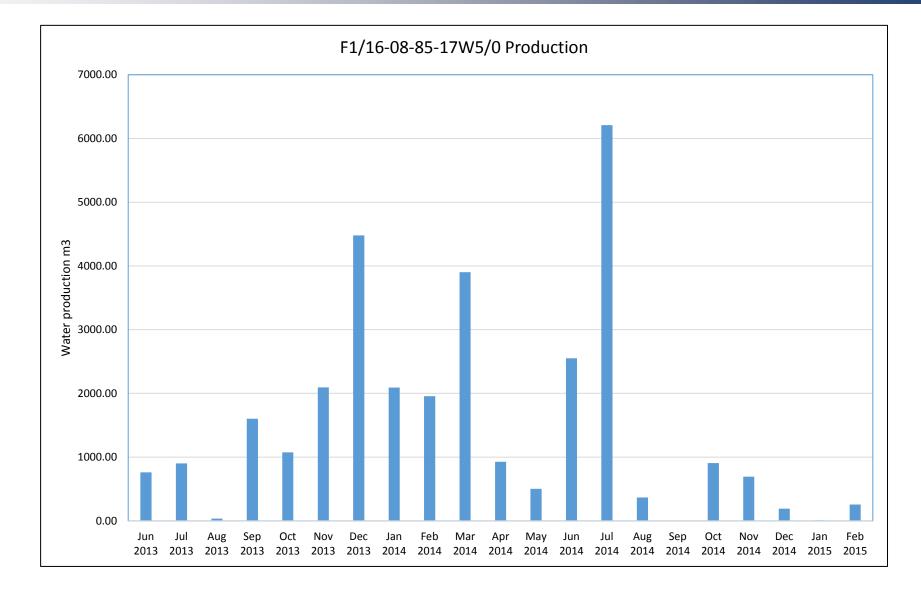
## **Measurement and Reporting**

- Updated MARP submitted February 6, 2015 Revision 3
  - No major changes to testing philosophy
  - MARP updated and submitted to include wells 4 and 5
- Production Volumes
  - Wells tested using a 2-phase separator and prorated on facility actuals
    - Coriolis meter and water cut analyzer used on the liquids dump for tested oil volume
    - Oil production volumes credited back to facility at receipt point (1-26)
  - Casing gas measured by orifice meters
  - Steam injected volumes measured by BFW into OTSG (vortex and turbine meters) as well as wellhead venturi meter
  - Source water measured by turbine meter

### **Measurement and Reporting**

• Corresponding facility codes (left) and process schematic (right) are shown below.




#### **Source Water**

- WSW: F1/16-08-085-17W5/0
- Paddy formation (fresh)
- Cum extracted: 31,501.7 m<sup>3</sup> water
  - No source water volumes extracted since February, 2015

| Month    | Water m <sup>3</sup> |
|----------|----------------------|
| Jun 2013 | 760.00               |
| Jul 2013 | 900.40               |
| Aug 2013 | 35.00                |
| Sep 2013 | 1602.00              |
| Oct 2013 | 1075.00              |
| Nov 2013 | 2093.00              |
| Dec 2013 | 4478.00              |
| Jan 2014 | 2091.50              |
| Feb 2014 | 1956.80              |
| Mar 2014 | 3901.90              |
| Apr 2014 | 925.80               |
| May 2014 | 501.30               |
| Jun 2014 | 2550.50              |
| Jul 2014 | 6210.20              |
| Aug 2014 | 366.00               |
| Sep 2014 | 0.00                 |
| Oct 2014 | 905.20               |
| Nov 2014 | 693.00               |
| Dec 2014 | 191.00               |
| Jan 2015 | 8.40                 |
| Feb 2015 | 256.70               |
| Total    | 31,501.70            |

#### **Source Water Volumes**

No source water volumes extracted since February, 2015



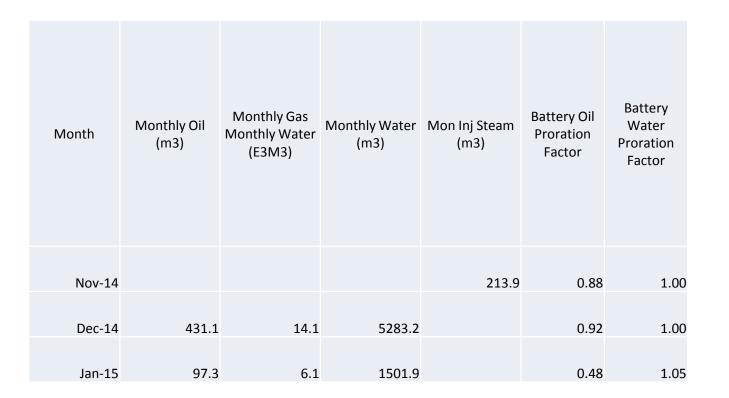
www.murphyoilcorp.com

#### Well 1 S0/04-17-085-17W5/0

| Month  | Monthly Oil<br>(m3) | Monthly Gas<br>Monthly Water<br>(E3M3) | Monthly Water<br>(m3) | Mon Inj Steam<br>(m3) | Battery Oil<br>Proration<br>Factor | Battery Water<br>Proration<br>Factor |
|--------|---------------------|----------------------------------------|-----------------------|-----------------------|------------------------------------|--------------------------------------|
| Jun-13 | 0                   | 0                                      | 410.6                 | 760                   |                                    | 1                                    |
| Jul-13 | 80.6                | 4.2                                    | 126.9                 | 834                   |                                    | 1                                    |
| Aug-13 | 186.7               | 0.1                                    | 391.9                 | 0                     | 1.03                               | 1.14                                 |
| Sep-13 | 14.7                | 6.9                                    | 488.2                 | 1167                  | 1                                  | 1.14                                 |
| Oct-13 | 143.3               | 11.6                                   | 174.6                 | 0                     | 1.02                               | 0.82                                 |
| Nov-13 | 20.3                | 0.8                                    | 352.1                 | 669                   | 0.94                               | 1.12                                 |
| Dec-13 | 150                 | 15.1                                   | 801.5                 | 1056                  | 1.03                               | 1.08                                 |
| Jan-14 | 82.4                | 3.1                                    | 177                   | 1583                  | 0.95                               | 0.94                                 |
| Feb-14 | 249.5               | 11.6                                   | 844                   | 0                     | 0.82                               | 1.06                                 |

| Month  | Monthly Oil<br>(m3) | Monthly Gas<br>Monthly Water<br>(E3M3) | Monthly Water<br>(m3) | Mon Inj Steam<br>(m3) | Battery Oil Proration<br>Factor | Battery Water<br>Proration<br>Factor |
|--------|---------------------|----------------------------------------|-----------------------|-----------------------|---------------------------------|--------------------------------------|
| Jun-13 | 0                   | 0                                      | 0                     | 0                     |                                 | 1                                    |
| Jul-13 | 0                   | 0                                      | 0                     | 0                     |                                 | 1                                    |
| Aug-13 | 22.6                | 0.1                                    | 476.6                 | 0                     | 1.03                            | 1.14                                 |
| Sep-13 | 5.9                 | 2.7                                    | 62.8                  | 150                   | 1                               | 1.14                                 |
| Oct-13 | 218.8               | 17.7                                   | 601.2                 | 939                   | 1.02                            | 0.82                                 |
| Nov-13 | 603.7               | 22.7                                   | 1388.8                | 1295                  | 0.94                            | 1.12                                 |
| Dec-13 | 143.9               | 14.2                                   | 205                   | 3030                  | 1.03                            | 1.08                                 |
| Jan-14 | 1385.9              | 52.8                                   | 2038                  | 218                   | 0.95                            | 0.94                                 |
| Feb-14 | 443.3               | 20.5                                   | 1223.7                | 1820.8                | 0.82                            | 1.06                                 |
| Mar-14 |                     |                                        | 427.7                 | 3771.9                | 3.03                            | 0.81                                 |
| Apr-14 | 1521.9              | 36.4                                   | 2968.3                | 0                     | 0.96                            | 1.06                                 |
| May-14 | 659                 | 40.9                                   | 3036.6                | 0                     | 0.87                            | 1.02                                 |
| Jun-14 | 383.9               | 15.8                                   | 1923.9                | 1594.5                | 1.39                            | 0.97                                 |
| Jul-14 | 820.8               | 38.1                                   | 2454.7                | 5893.2                |                                 |                                      |
| Aug-14 |                     | 0.1                                    | 16.7                  |                       | 0.91                            | 0.95                                 |
| Sep-14 | 1039.7              | 0.1                                    | 4125.8                |                       | 0.84                            | 1.08                                 |
| Oct-14 | 519.1               | 16.2                                   | 3734.6                |                       | 0.97                            | 0.97                                 |
| Nov-14 | 196.5               | 0.1                                    | 1861.6                |                       | 0.88                            | 1.00                                 |
| Dec-14 | 5.7                 |                                        | 1344.4                |                       | 0.92                            | 1.00                                 |
| Jan-15 | 250.5               | 0.1                                    | 4118.7                |                       | 0.48                            | 1.05                                 |
| Feb-15 | 188.2               | 0.3                                    | 3128.7                |                       | 0.63                            | 0.85                                 |
| Mar-15 | 247                 | 0.1                                    | 3205.4                |                       | 0.82                            | 0.86                                 |
| Apr-15 | 167.4               | 0.5                                    | 2660.3                |                       | 0.63                            | 0.92                                 |
| May-15 | 295.4               | 0.3                                    | 2730.7                |                       | 0.97                            | 0.99                                 |
| Jun-15 | 122.4               | 33                                     | 2345.6                |                       | 0.60                            | 1.42                                 |
| Jul-15 | 248.2               | 45.3                                   | 2099                  |                       | 0.89                            | 0.87                                 |
| Aug-15 | 53                  | 9.9                                    | 603.8                 |                       | 0.87                            | 1.07                                 |

#### Well 2 00/16-09-085-17W5/0


| Month  | Monthly Oil<br>(m3) | Monthly Gas<br>Monthly Water<br>(E3M3) | Monthly<br>Water<br>(m3) | Mon Inj Steam<br>(m3) | Battery Oil<br>Proration<br>Factor | Battery Water<br>Proration<br>Factor |
|--------|---------------------|----------------------------------------|--------------------------|-----------------------|------------------------------------|--------------------------------------|
| Jun-13 | 0                   | 0                                      | 410.6                    | 760                   |                                    | 1                                    |
| Jul-13 | 80.6                | 4.2                                    | 126.9                    | 834                   |                                    | 1                                    |
| Aug-13 | 186.6               | 0.1                                    | 391.9                    | 0                     | 1.03                               | 1.14                                 |
| Sep-13 | 14.7                | 6.9                                    | 488.2                    | 1167                  | 1                                  | 1.14                                 |
| Oct-13 | 143.3               | 11.6                                   | 174.6                    | 0                     | 1.02                               | 0.82                                 |
| Nov-13 | 20.3                | 0.8                                    | 352.1                    | 669                   | 0.94                               | 1.12                                 |
| Dec-13 | 150                 | 15.1                                   | 801.5                    | 1056                  | 1.03                               | 1.08                                 |
| Jan-14 | 82.4                | 3.1                                    | 177                      | 1583.5                | 0.95                               | 0.94                                 |
| Feb-14 | 249.5               | 11.6                                   | 844                      | 0                     | 0.82                               | 1.06                                 |
| Mar-14 | 35.2                |                                        | 28.7                     |                       | 3.03                               | 0.81                                 |
| Apr-14 | 147.9               | 3.5                                    | 223.2                    | 782.8                 | 0.96                               | 1.06                                 |
| May-14 | 154                 | 9.5                                    | 378.8                    | 422.3                 | 0.87                               | 1.02                                 |
| Jun-14 | 73.4                | 3                                      | 35                       | 431                   | 1.39                               | 0.97                                 |
| Jul-14 |                     |                                        |                          |                       |                                    |                                      |
| Aug-14 | 61.7                | 2.9                                    | 311                      | 230                   | 0.91                               | 0.95                                 |
| Sep-14 |                     | 0.1                                    | 184                      |                       | 0.84                               | 1.08                                 |
| Oct-14 | 133                 | 0.1                                    | 404.4                    | 584.2                 | 0.97                               | 0.97                                 |
| Nov-14 | 177.2               | 11.1                                   | 382.4                    | 512.5                 | 0.88                               | 1.00                                 |
| Dec-14 | 64.2                | 0.1                                    | 40                       |                       | 0.92                               | 1.00                                 |
| Jan-15 | 33.9                |                                        | 65                       |                       | 0.48                               | 1.05                                 |
| Feb-15 | 27.8                | 9.7                                    | 30.8                     |                       | 0.63                               | 0.85                                 |

Well 3 00/12-08-085-17W5/0

Well 4 00/13-08-085-17W5/0

| Month  | Monthly Oil<br>(m3) | Monthly Gas<br>Monthly Water<br>(E3M3) | Monthly Water<br>(m3) | Mon Inj Steam<br>(m3) | Battery Oil<br>Proration<br>Factor | Battery Water<br>Proration<br>Factor |
|--------|---------------------|----------------------------------------|-----------------------|-----------------------|------------------------------------|--------------------------------------|
| Oct-14 |                     |                                        |                       | 3200.4                | 1.02                               | 0.82                                 |
| Nov-14 | 524.7               | 0.1                                    | 5235.3                |                       | 0.88                               | 1.00                                 |
| Dec-14 | 182.1               | 6                                      | 3741.7                |                       | 0.92                               | 1.00                                 |
| Jan-15 | 70.2                | 4.4                                    | 1265.3                |                       | 0.48                               |                                      |

Well 5 02/13-08-085-17W5/0



### **Produced and Waste Water**

- Produced water reported in Petrinex.
- Destination:
  - 04-22-084-18W5 salt water
     disposal well
  - 12-24-085-19W5 Tervita sand and waste disposal well

| Month  | Produced Water (m3) | Waste Water (m3) [1] |
|--------|---------------------|----------------------|
| Jan-14 | 2215                | 2379                 |
| Feb-14 | 2068                | 1869                 |
| Mar-14 | 456                 | 705                  |
| Apr-14 | 3192                | 3014                 |
| May-14 | 3415                | 3217                 |
| Jun-14 | 1959                | 2440                 |
| Jul-14 | 0                   | 337                  |
| Aug-14 | 2766                | 2832                 |
| Sep-14 | 4530                | 4592                 |
| Oct-14 | 4117                | 4302                 |
| Nov-14 | 7137                | 7474                 |
| Dec-14 | 10434               | 10439                |
| Jan-15 | 6917                | 0                    |
| Feb-15 | 3129                | 0                    |
| Mar-15 | 3205                | 0                    |
| Apr-15 | 2660                | 0                    |
| May-15 | 2731                | 0                    |
| Jun-15 | 2346                | 0                    |
| Jul-15 | 2099                | 0                    |
| Aug-15 | 604                 | 0                    |
| Sep-15 | 0                   | 0                    |
| Oct-15 | 0                   | 0                    |
| Nov-15 | 0                   | 0                    |
| Dec-15 | 0                   | 0                    |
|        |                     |                      |

# Sulphur Production & Ambient Air Quality Objectives (AAQO)

- Produced gas is sweet and directed to flare (casing to HP and solution to LP)
  - The sulphur production (t/d) from flare volumes is zero (allowed 0.004 t/d).
  - Monthly gas analysis showed mostly zero with some "trace" of H2S
- Ambient Air Quality Objectives (right tables)
  - Four passive air monitors for each pollutant (S02 H2S, N02) sampled on a daily basis for one month.
  - Value shown is a peak from 4 samplers.
  - No exceedance from AAQO.

| Pollutant | AAQO<br>Guideline        |
|-----------|--------------------------|
| SO2       | < 48 ppb, 24h            |
| H2S       | < 3 ppb, 24h             |
| NO2       | < 11 ppb, 30-<br>day avg |

| Passive Air Monitor Samples (ppb) |       |       |        |  |  |
|-----------------------------------|-------|-------|--------|--|--|
| Year/Max                          | SO2   | H2S   | NO2    |  |  |
| 2014                              | 1.2   | 0.14  | 7.9    |  |  |
|                                   | (Oct) | (Nov) | (July) |  |  |
| 2015                              | 0.40  | 0.11  | 3.1    |  |  |
|                                   | (May) | (Aug) | (Oct)  |  |  |

## **Environmental Issues**

- EPEA approval 322432-00-00 received to operate its Cadotte thermal project September 5, 2013
  - EPEA approval is suspended for 2016 year, because wells, facility, and pipelines are shutdown.
  - To monitor and keep records of run-off ponds internally.
- Summary of Monitoring
  - Disturbance and Stockpile Report Submitted March 5, 2014 (one-time).
  - Passive Air Monitoring and Reporting Measures  $NO_2$ ,  $SO_2$  and  $H_2S$  monthly
    - Reports submitted to EPEA monthly starting Oct. 2013 with last one for February 2016 month.
    - No limits exceeded to date
  - Annual Air Emissions Report submitted March 31, 2015
  - Ground Water Monitoring submitted March 31, 2015
  - Industrial Waste Water and Runoff Report submitted March 31, 2015

## Compliance

• Murphy is in compliance with all regulatory bodies (AER, EPEA, AB Env, and DFO). Specifics shown below and in Suspension section.

#### • Flaring

- No issues in 2014 (0.8 e3m<sup>3</sup>/d) and 2015 (0.3 e3m<sup>3</sup>/d)
- F1/16-08-085-17W5/0 Source Water Well
  - Monthly reports were submitted to Petrinex since production started in June 2013.
  - Annual Waters reports submitted for 2014 and 2015 years.
- Manual Stack Survey Extension submitted Feb. 25, 2014
  - Once Through Steam Generator tube failure in Dec 2014, no steam in 2015, therefore, no stack survey for 2015.

## Agenda

- Subsurface
- Surface
- Future Plans
- Conclusions

### **Future Plans**

• Project is currently on hold and suspended.

• Future plans will be revisited once project is planned for re-start.

## Agenda

- Subsurface
- Surface
- Future Plans
- Conclusions

## D54 Performance

- Pilot performance results were mixed, especially in the initial three wells which were not drilled as fit for purpose HCSS producers
  - Drilled as primary producers in the Upper Bluesky, subsequently utilized as HCSS wells in the thermal pilot
  - Well 1 shut-in early due to poor performance, wells 2 & 3 were more successful
- Wells 4 & 5, drilled into the Lower Bluesky, have indicated good performance in the first cycle with a combined CSOR of 3.0
  - Well 4 CSOR of 2.3, well 5 CSOR of 4.0